Hydrogeological Assessment Proposed Residential Development 11 Main Street

Puslinch, Ontario

WDD Main Street Inc. 499 Brant Street Burlington, Ontario L7R 2G5

August 28, 2024 T1220482.003

WDD Main Street Inc.

Prepared by:

Jan My gle

Paul L. Raepple, P.Geo. Senior Project Manager/Senior Hydrogeologist Environmental, GTA/SWO

Reviewed by:

un million

R. Baker Wohayeb, M.A.Sc., P.Eng., QP_{RA} Technical Director Environmental, GTA office

Revisions and publications log.

REVISION No.	DATE	DESCRIPTION
0A	August 28, 2024	Final Report

Distribution

1 digital copy	WDD Main Street Inc.
1 digital copy	Englobe

Property and Confidentiality

"This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe Corp. and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe Corp. and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe Corp. and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Englobe Corp.'s subcontractors who have carried out on-site or laboratory work are duly assessed according to the purchase procedure of our quality system. For further information, please contact your project manager."

Table of Contents

1	Introduction	1
2	Scope of Work	3
3	Site Description	4
3.1	Site Description and Physiography	
3.2	Site Geology and Hydrogeology	
3.3	Review of Planning Policies	
3.4	Private Well Review	
3.5	Climate Conditions	7
3.6	Summary of Subsurface Investigation	7
3.7	Earth Fill	8
3.8	Silty Sand to Sand and Silt	8
3.9	Clayey Silt	8
3.10	Ground Water Conditions	8
3.11	Groundwater Flow Pattern	9
3.12	In-Situ Hydraulic Conductivity Testing	10
3.13	Summary of Water Quality Analysis	10
4	Water Balance Assessment	
4.1	Water Balance Targets	12
5	Servicing Assessment	13
5.1	Private Water Supply Considerations	13
5.2	Sewage System Design for Proposed Development	14
6	Nitrate Loading Impact Assessment	16
7	Environmental Impact Analysis	19
8	Summary and Conclusions	

FIGURES

Figure 6: Natural Heritage Feature Map
Figure 7: MECP Well Records Map
Figure 8: Groundwater Flow Direction

Figure 1: Site Location Plan

Figure 3: Surficial Geology Figure 4: Physiography Map Figure 5: Topography Map

Figure 2: Borehole Location Plan

TABLES

Table 1: Results of Groundwater and Surface Water Sampling Table 2: Water Balance Assessment

APPENDICES

Appendix A Borehole Logs

Appendix B Well Record Summary

Appendix C Results of Groundwater Monitoring

Appendix D Results of Hydraulic Conductivity Testing

Appendix E Laboratory Certificates of Analysis

Appendix F Nitrate Mass Balance Calculations

1 Introduction

Englobe was retained by WDD Main Street Inc. to conduct a Hydrogeological Assessment for the proposed residential subdivision development at 11 Main Street, in the Town of Puslinch, Ontario (the 'Site').

The Site is bounded by vacant lands (wooded lots) to the south, Residential properties and Badenoch Street to the north, residential buildings to the west and a mixed residential and agricultural property to the east. The Site is irregular in shape with a total area of approximately 231,040 m² (57.1 acres). A Site location plan is provided in **Figure 1**.

Based on a review of the Draft Plan of Subdivision, drawing D14 dated June 9, 2024, prepared by Weston Consulting, it is understood that the proposed development would include a residential subdivision proposed within the north portion of the Site. The proposed subdivision consists of 21 single detached dwellings, a storm water management block, and internal roadways. Plan review indicates that residential lots will range in size from 0.197 ha to 0.382 ha. It is understood that each proposed dwelling will rest on a single basement level extending to the footprint of the proposed building.

The study was undertaken to assess the hydrogeological conditions of the Site and to provide general information regarding the hydrogeological impact of the proposed development on the local groundwater regime. The report addresses the following areas:

- Identifying the geological and hydrogeological setting of the Site;
- Confirming groundwater level(s) and flow direction(s) beneath the Site;
- Evaluating the pre- and post-development water balance for the Site;
- Completion of a servicing assessment including a review of well records to assess aquifer characteristics and the feasibility of individual private water supply wells, and a nitrate impact assessment to evaluate the feasibility of subsurface sewage disposal, and potential sewage treatment requirements.
- Identifying potential impacts to the nearby groundwater receptors including water supply wells and natural heritage features as a result of site servicing;
- Providing a mitigation plan for the potential impacts to the groundwater receptors and/or natural heritage features, if applicable;

The Township of Puslinch requires that a hydrogeological assessment be completed as below (Township of Puslinch, 2019):

- A hydrogeological study will be required for most new development applications to demonstrate the suitability of the site for development of private services.
- The hydrogeological study report will be prepared by a qualified professional (i.e. professional hydrogeologist or engineer) and will generally include details regarding the site setting, desktop geological and hydrogeological information, and results from a field investigation program established by the qualified professional to support the development including results from test pits, boreholes, sampling, pumping tests, monitoring wells and well surveys, as required.

• The hydrogeological study report will review the availability and sustainability of adequate groundwater supplies with respect to both quantity and quality, including any potential interference to existing water users or sensitive receptors (e.g., wetlands, watercourses).

2 Scope of Work

The following tasks were undertaken to address the requirements of the hydrogeological investigation:

- <u>Review of available background information</u>. A review of available geotechnical and hydrogeologic information for the site was conducted, including topographic mapping, geologic mapping, a search of the Ministry of the Environment Conservation and Parks online water well record database, applicable regulations including source water protection, Township of Puslinch official plans, areas regulated by the local conservation authority, and results of previous hydrogeological and geotechnical investigations completed at the site.
- <u>Groundwater Monitoring and Sampling</u>. Groundwater monitoring was completed in July 2024 following significant rainfall events to assess seasonal fluctuations in groundwater in comparison with groundwater levels obtained in August/September 2022. Groundwater quality sampling was completed to assess the general water quality for completed monitoring wells within the unconfined shallow groundwater and for surface water within Bronte Creek crossing the western extent of the Site. Groundwater/surface water analysis was competed for general inorganics and metals parameters wit results compared to O. Reg. 169/03.
- <u>Water Balance Assessment</u>. A water balance assessment was completed for the proposed development to compare the pre and post development conditions at the site given the proposed increase in impervious cover across the site following development. Recommendations were provided for the implementation of Low Impact Development techniques given the observed shallow soil and groundwater conditions at the site to maintain pre-development rates of infiltration under a Best Management Practice approach.
- <u>Preliminary Well Servicing Study</u>. A preliminary well servicing feasibility review was competed based on the results of shallow groundwater sampling, the likelihood for groundwater impacts due to land use was assessed. Aquifer yield was evaluated through a review of MECP well records. Recommendations for further study were provided to meet requirements of MOE Procedure D-5-5, and requirements from the local municipality.
- <u>Septic Impact Assessment</u>. A septic impact assessment was completed to evaluate the
 expected impact of subsurface sewage disposal on shallow groundwater in accordance with
 MOE Procedure D-5-4, as provided in the predictive assessment calculations for both on-site
 and off-site impacts.

3 Site Description

3.1 Site Description and Physiography

The site is located within the County of Wellington, and the Township of Puslinch at the municipal address of 11 Main Street in Morriston, Ontario. The site is located immediately south of Main Street extending east to south of Ochs Street and immediately south of residential dwellings fronting to Badennoch Street as indicated in the attached **Figure 1**. Land uses in the vicinity of the site consist of residential dwellings within the urban limits of Morriston. Residential dwellings fall to the north and west of the Site, with lands to the east and south consisting of undeveloped woodlot. The Site and surrounding vicinity are serviced with private water supply wells and private subsurface sewage disposal.

The Site is located within physiographic regions of Southern Ontario known as the Horseshoe Moraines (within the north, central, and west portions) and partially in Flamborough Plain (within the southeast and east portions). The Horseshoe Moraines within the vicinity of the Site comprises a Till Moraines, and Flamborough Plain consists of Limestone Plains physiographic feature.

The Horseshoe Moraines consist of the largest concentration of sand and gravel in Southern Ontario. Structurally, within the southwestern portion of the region, the Horseshoe Moraines consist of two to three morainic ridges composed of pale brown, hard, calcareous, fine-textured till, with moderate degrees of stoniness. (Chapman and Putnam, 1984). **Figure 4** shows the location of the Site within the regional physiography map.

The ground surface elevation was measured between 319.2 and 313.0 masl at the borehole locations drilled within the footprint to the proposed subdivision area. A review of a surface topography map for the Site and surrounding area indicates that the topography of the Site is sloping downwards in a northwest direction. As such, it is anticipated that generated runoff (if it is not managed) will flow in a northwesterly direction. **Figure 5** illustrates the topography of the Site and surrounding area.

3.2 Site Geology and Hydrogeology

The current understanding of the surficial geological setting of the Site is based on scientific work conducted by the OGS (OGS, 2003). The Site and surrounding area are mapped within Till consisting of stone-poor, sandy silt to silty sand-textured till. **Figure 3** illustrates the mapped surficial geology for the Site and the surrounding area.

Bedrock was not contacted over the current subsurface investigation. However, a review of the nearby MECP well records (MECP Well ID 6709771) indicates that the bedrock can be contacted approximately 24 m below ground surface. Bedrock within the vicinity of the Site is mapped within the Guelph Formation comprising dolostone (OGS, 2007).

The major underlying geologic units consist of grey coloured limestone/dolostone of the Guelph Formation followed by brown to black limestone/dolostone of the Amabel Formation, white and gray sandstones and shale of the Clinton and Cataract Groups and red shale of the Queenston Formation. The Guelph formation is characterized with a relatively massive dolostone cap rock, followed by fractures water bearing limestones.

The Guelph formation is expected to provide a confined to semi-confined groundwater aquifer. The underlying Amabel Formation also provides a water bearing aquifer for local residential and agricultural uses. It is expected that the contact between the Guelph and Amabel Formations consists of a highly fractured contact providing adequate water quantity and quality for residential use. Underlying sandstones of the Clinton/Cataract Group and shale of the Queenston Formation are not used for water supply.

The Site is located within Bronte Creek Watershed within the jurisdiction of Conservation Halton. The headwaters of the Bronte Creek are generated to the northwest of the Site and flows southeasterly direction crossing the southwest portion of the Site. The Bronte Creek Watershed is about 300 km² of mostly rural land that includes parts of Burlington, Oakville, Milton, Hamilton and Wellington County. The main branch of Bronte Creek is 48 kilometres long and there are 12 tributaries that feed into the creek. Many of the people who live and work in the Bronte Creek watershed are dependent on groundwater sources for drinking water and agricultural purposes (Conservation Halton Website, 2022).

The MNRF's database was reviewed for any natural heritage features including, watercourses, bodies of water, wetland features, Area of Natural and Scientific Interest (ANSI) and wooded areas. **Figure 6** shows the location of the Site within the surrounding Natural Heritage Features.

Record review indicates that there are wetland features and wooded areas near the Site. Records of wetland features, evaluated provincial as per Ontario Wetland Evaluation System (OWES), are scattered around the Site with a closest record (Beverly Swamp Wetland Complex) mapped near the southwest limits of the Site (approximately 260 m away from the Site boundary). A record of wetland feature evaluated as Other is mapped within the central potion of the Site extending to the south. Additionally, two records of unevaluated wetland feature are located within the west and southwest portions of the Site. Furthermore, records for wooded areas are scattered around and within the Site.

3.3 Review of Planning Policies

The Wellington County's Official Plan sets up policies that deal with legislative and administrative concerns, guides physical growth, and addresses social, economic, and environmental concerns. The Official Plan provides land use planning designations and identifies areas of environmental significance where more stringent policies may apply for development applications.

Schedule A7 (Puslinch) of the Wellington County Official Plans were reviewed on August 21, 2024 for the current study. A review of the draft plan of subdivision dated June 6, 2024, indicates that the Site is located within the secondary urban centre of Morriston, identified as a Greenbelt Town/Village. Schedule B7 (Puslinch) indicates the Site land use as a secondary urban centre, with areas to the south of the site designated as greenlands, and core greenlands (associated with Bronte Creek). Schedule C7 (Puslinch) indicates the Site does not fall within a wellhead protection area. The Paris Galt Moraine policy area falls immediately north of the Site.

Conservation Halton Regulated Area online mapping was reviewed on August 21, 2024. The Site is partially located within a Conservation Halton Regulated Area (along the south limit of the Site boundary). As such, it is anticipated that a permit from the Conservation Halton under O. Reg. 162/06 will be required for the proposed development.

3.4 Private Well Review

MECP well record database was reviewed for records located within a radius of 500 m from the approximate Site boundary (Study Area). The location of the well records is presented on **Figure 7**. A total of two hundred and twenty-eight (228) wells were located within the Study Area. A summary of data obtained from record review is presented in **Table 3-1** and **Appendix B**.

Number of the Well Records	228
Well Type	
Drilled Well	184 (81%)
Other method	24 (11%)
Unknown	20 (8%)
Target Aquifer	
Overburden	43 (19%)
Shallow Bedrock (Depth less than 36.5 m)	76 (33%)
Deep Bedrock (Depth greater than 36.5 m)	31 (14%)
No Data	78 (34%)
Depth Ranges	
Less than 10.7 m (Less than 35 ft)	16 (7%)
10.7 m to 30.5 m (35 ft to 100 ft)	61 (26%)
Greater than 30.5 m (Greater than 100 ft)	79 (35%)
No Data	72 (32%)
Water Use (Final Status)	
Observation Well/Test Hole/Monitoring	14 (6%)
Domestic/Livestock	194 (85%)
Alteration	7 (3%)
Abandoned - Quality	1 (0%)
Abandoned - Other	6 (3%)
Commercial/Public	6 (3%)
Pumping Rate	
18.9 L/min or less (5.0 G/min of less)	6 (3%)
22.9 L/min - 56.7 L/min (6.0 G/min - 15 G/min)	70 (31%)
60.5 L/min - 113.4 L/min (16 G/min - 30 G/min)	56 (25%)
Greater than 113.4 L/min (Greater than 30 G/min)	3 (1%)
No Data	93 (40%)
Reported Static Water Level	
Less than 6.1 m (20 ft)	23 (10%)
6.1 m to 11.0 m (20 ft to 36 ft)	47 (21%)
Greater than 11.0 m (36 ft)	132 (58%)
Unknown	26 (11%)

Table 3-1- MECP Well Record Summary

The above summary indicates that most local wells are drilled wells registered as domestic supply wells. Four (4) records of water supply wells are also listed within the Site (Record nos. 177, 178, 185 and 186 on **Figure 7** and **Appendix B**). These wells are situated along the central northern property limit and are wells for properties adjacent to the Site.

Based on a review of local well records, the primary water supply aquifer consists of overburden deposits expected at the contact between overburden and bedrock, or within the Guelph Formation at depths less than 30.5 m below existing grades. Wells were also noted within deep bedrock understood to be the Amabel

Formation at depths typically greater than 35.1 m below existing grades. Reported flow rates are typically greater than 18.9 L/min and are expected to range from 37.8 L/min to 75.6 L/min, considered suitable for residential supply.

3.5 Climate Conditions

The following general climate data was obtained from historical climate data available online through Environment Canada. Annual precipitation data was used from the Guelph Turf Grass Institute Weather Station located approximately 14 kilometers north from the site. Average precipitation values were used over the period of 1998 to 2024. Climate conditions expected for the site are summarized as follows:

•	Precipitation	958 mm/a
---	---------------	----------

• Evapotranspiration 611 mm/a

• Water Surplus 347 mm/a

Infiltration of precipitation at the site is expected to be controlled by soil type at the site which consists of silty sand overlying clayey silt till. Infiltration rates were determined based on typical ground water recharge rates for various soil textures provided within the "MOEE Hydrogeological Technical Information Requirements for Land Development Application", (MOEE, 1995), Table 3 (page 4-63). Based on an annual water surplus of 347 mm per year the annual rates for infiltration and runoff at the site were estimated a 208 mm and 139 mm respectively.

Potential evapotranspiration (611 mm/a) was calculated following the Thornthwaite method as below:

PET (cm/month) = 1.6 (L/12) (10T_a/I)^a Where:L is the average day length T_a is the average daily temperature $I = \Sigma (T_a/5)^{1.5}$ $a = (6.75x10^{-7}) I^3 - (7.71x10^{-5}) I^2 + (1.792x10^{-2}) I + 0.49$

Values for average day length and average daily temperature were obtained online from the Environment Canada climate normals for 1994 - 2022 for the Guelph Turf Grass Institute Weather Station. The climate reported above is typical for Southern Ontario with annual total precipitation exceeding the mean annual evapotranspiration.

It is noted that the above are average values, which are representative in a regional context. There will be seasonal and annual variations in these values. However, the average values will govern long-term ground water recharge and discharge rates at the site. Therefore, average values are considered appropriate for the assessment of the hydrogeological conditions at the site.

3.6 Summary of Subsurface Investigation

Borehole drilling and monitoring well installation were conducted in conjunction with a geotechnical investigation on August 16, 2022. The program consisted of the drilling of five boreholes and the installation of four monitoring wells across the Site. The approximate locations of boreholes are shown on **Figure 2**.

The following Site stratigraphy is based on encountered stratigraphy within completed boreholes and noted findings in the field. It should be noted that the subsurface conditions are confirmed at borehole locations only, and may vary at other locations. The boundaries between the various strata represent an inferred transition rather than a precise plane of geological change. This summary is intended to correlate the data to assist in the interpretation of the subsurface conditions at the Site. For more specific subsurface details, refer to the enclosed Borehole Logs and a geological cross-section in **Appendix A**.

Boreholes were completed to various depths between 6.6 m to 8.1 m below grade (elevations ranging from 313.3 m to 306.4 m). The subsurface conditions encountered at the Site generally consisted of sand fill overlying silty sand and clayey silt (within BH1) to the completed depth of investigation. The following is a general description of the major stratigraphic units and ground water conditions observed in the boreholes completed at the Site.

3.7 Earth Fill

Earth fill materials, consisting of sand, with some gravel and trace amounts of rootlets were encountered at the surface layer in each borehole and extended to a depth of 0.8 mbgs (elevations ranging from 319.1 m to 312.2 m).

Fill material is loose to dense in consistency and brown in color. The in-situ moisture contents of the fill samples ranged from 2 to 7 percent by mass, indicating a moist condition.

3.8 Silty Sand to Sand and Silt

Silty sand to Sand and Silt deposits, with trace amounts of clay and gravel was encountered beneath the earth fill zone in each borehole and extended to the depths ranging from 6.1 m to the full depth of investigation except for BH1 where silty sand deposits extended to a depth of 6.1 mbgs, or an elevation of 306.9 m.

Silty sand to sand and silt is loose to very dense in consistency and brown in color. The in-situ moisture contents of the silt soil samples ranged from 0 to 22 percent by mass, indicating a moist to wet condition.

3.9 Clayey Silt

Stratum of clayey Silt deposits, with trace amount of sand was encountered beneath the silty sand to sand and silt deposits in Borehole 1 approximately 6.1 mbgs, (elevation of 306.9 m) and extended to the depth of 6.6 mbgs (306.4 m).

It is very stiff in consistency and brown in color. The in-situ moisture content of the clayey silt sample was 15 percent by weight, indicating a moist condition.

3.10 Ground Water Conditions

A groundwater monitoring program was completed between August 24th, 2022 extending to September 19th, 2022 as a part of the hydrogeological assessment. Four (4) monitoring wells installed for the hydrogeological assessment were considered for monitoring program.

Monitoring wells were developed on August 24th, 2022 and the groundwater levels were measured using an interface probe (Solinst Interface Metre, Model 122).

Additional groundwater monitoring was completed in 2024 following significant rainfall events to evaluate seasonal fluctuations in groundwater and expected seasonal high groundwater elevations for the Site. High groundwater conditions were monitored on July 18, 2024, which were measured following significant precipitation on July 10, 2024, of 59 mm, and July 16, 2024, of 56.7 mm, with monthly precipitation for July 2024 of 166.2 mm (average monthly rainfall of 80 mm). Precipitation was recorded at the Guelph Turf Grass Institute Weather Station, located approximately 14 km northwest of the site and obtained online through the Environment Canada website.

While groundwater monitoring is not taken within the period of seasonal high groundwater conditions, given the high intensity precipitation over the month of July 2024, monitoring results are considered representative of seasonal high conditions.

The measured groundwater levels, along with other monitoring wells details and findings, are presented in **Appendix C**. A summary of the groundwater observations is provided in **Table 3-2**:

We	ell ID	Screen Interval	24-Aug-22	7-Sep-22	19-Sep-22	18-Jul-24	06-Aug-24
BH1	mbgs	3.6-6.6	Dry	Dry	Dry	3.93	3.98
	masl	309.4-306.4	Dry	Dry	Dry	309.04	308.99
BH2	mbgs	6.1-7.6	6.64	6.72	6.76	5.61	5.64
	masl	312.1-310.6	311.54	311.46	311.42	312.57	312.54
BH3	mbgs	4.6-7.6	5.22	5.33	5.42	4.29	4.35
	masl	312.5-309.5	311.93	311.82	311.73	312.86	312.80
BH5	mbgs	4.6-6.1	5.13	5.21	5.21	4.40	4.44
	masl	312.2-310.7	311.67	311.59	311.59	312.40	312.36

Table 3-2- Static Groundwater Level Monitoring

Notes: mbgs: metres below ground surface masl: metres above sea level

As shown in **Table 6-1**, the highest and lowest stabilized shallow groundwater levels were measured at elevations of 312.57 m and 312.86 m at monitoring wells BH3 and BH2, respectively.

3.11 Groundwater Flow Pattern

Groundwater flow pattern was interpreted using groundwater levels measured in the monitoring wells on July 18, 2024. **Figure 8** presents the interpreted groundwater flow pattern. Groundwater elevations are noted highest at BH3 at an elevation of 312.8 m which forms a local groundwater divide with groundwater flow to the east of the site directed to the tributary of Bronte Creek and associated wetlands, and flow to the west directed to Bronte Creek. Local groundwater flow will be influenced by topography and surface water features. Residential properties along Badenoch Street north of the site are considered as upgradient of the site, with Bronte Creek, and associated tributaries and wetlands located downgradient.

3.12 In-Situ Hydraulic Conductivity Testing

Hydraulic conductivity of the screen native subgrade was assessed at each of the completed monitoring well locations. Hydraulic conductivity analysis was determined based on falling and rising head single well response test (SWRT) tests. The results of the SWRT and rising head tests were analysed using the Bouwer and Rice method (1976). The results of the analysis are presented in **Appendix D**, with a summary of the findings provided in **Table 3-3** below:

Monitoring Well	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)	Test Method
BH2	312.1 to 310.6	Silty Sand to Silt and Sand	1.21 x 10 ⁻⁶	Rising Head Test
BH3	312.5 to 309.5	Silty Sand to Silt and Sand	1.18 x 10 ⁻⁶	Falling Head Test

A review of the findings suggests a moderate to low hydraulic conductivity for the silty sand to silt and sand layer within the screened intervals.

3.13 Summary of Water Quality Analysis

Groundwater quality sampling was completed within monitoring wells BH1, BH2, BH3, and BH5 and surface water sampling was competed from Bronte Creek at the southwest extent of the site. Analysis was completed for general inorganic parameters and dissolved metals (total metals for surface water analysis), with results compared to the Ontario Drinking Water Standards and Operational Objectives (O.Reg. 169/04).

Groundwater and surface water samples were submitted to Agat Laboratories of Mississauga, a CALA accredited third party laboratory, for analysis. All samples were collected in laboratory supplied bottles appropriate for the analysis completed. Collected samples were stored on ice in suppled coolers for transport to the laboratory. Sample temperatures were confirmed between 5.3 to 6.1 °C upon arrival. A summary of the results of groundwater and surface water sampling and laboratory certificates of analysis are provided in the attached **Appendix E**, with **Table 1** provided a summary of analysis in comparison with O.Reg. 169/03.

Groundwater quality analysis indicated elevated hardness levels within all collected samples, considered representative given the limestone bedrock and high calcium carbonate content of soils and bedrock. Samples from BH3 were observed to have elevated levels of sodium (117 mg/L), chloride (202 mg/L), total dissolved solids (824 mg/L) and nitrate (6.01 mg/L) relative to other obtained groundwater samples, not in exceedance of drinking water standards. Surface water sampling indicated elevated concentrations of sodium (309 mg/L), chloride (476 mg/L), and total dissolved solids (1,200 mg/L).

Shallow groundwater quality was observed to be within drinking water standards and is not considered to represent a potential source of contamination for the underlying bedrock aquifer. Further soils across the site were noted to consist of silty sand to sand and silt overlying clayey silt with bedrock depth reported through well records at depths of approximately 24 m (80 feet). It is expected that the underlying bedrock aquifer is geologically isolated from surrounding land use impacts including subsurface sewage disposal and agricultural uses.

4 Water Balance Assessment

Based on a review of the Draft Plan of Subdivision, drawing D14 dated June 9, 2024, prepared by Weston Consulting, it is understood that the proposed development would include a residential subdivision proposed within the north portion of the Site. The proposed subdivision consists of 21 single detached dwellings, a storm water management block, and internal roadways. Plan review indicates that residential lots will range in size from 0.197 ha to 0.382 ha. It is understood that each proposed dwelling will rest on a single basement level extending to the footprint of the proposed building.

The pre-development site is considered undeveloped. The following area breakdown for the Site is expected given the current draft plan of subdivision:

•	Single Detached Residential	4.436 ha
•	Storm Water Management	0.345 ha
•	Environmental Protection Lands	17.131 ha
•	Additional Lands	0.059 ha
•	Roads	<u>1.133 ha</u>
	 TOTAL 	23.104 ha

The total developable area of the site is considered at 5.973 hectares, given the coverage of Environmental Protection Lands which are to be maintained following site development.

Soil conditions for the site were evaluated based on a series of five boreholes completed by Englobe in August 2022 as summarized in Section 3.6 above. Regional climate conditions were based on historical weather records accessed online from Environment Canada and are summarized in Section 3.5 above.

Based on the proposed development plan it is expected that an increase in impervious areas at the site following development will result in an overall increase in the rate of runoff of precipitation at the site with a corresponding decrease in both infiltration and evapotranspiration. The following **Table 4-1** provides a summary of the calculated water balance given the site conditions and the proposed plan of development:

Table 4-1 - Summary of Site Water Balance

	Precipitation (m ³ /a)	Evapotranspiration (m ³ /a)	Infiltration (m ³ /a)	Runoff (m³/a)
Pre-Development	221,336	141,165	48,103	32,068
Post-Development	221,336	119,838	39,484	62,014

An infiltration deficit of approximately 8,619 m³ is expected following site development. It is expected that the pre-development water balance at the site can be maintained following a Best Management Practice approach utilizing proposed site grading and through directing rooftop runoff to infiltration where feasible. It is understood that an infiltration gallery is proposed within the SWP block, near the headwall structure HW3. It is expected that the gallery will be sufficiently sized to meet the pre-development infiltration targets following site development. It is expected that the mitigated water balance will be further assessed as part of detailed design, once storm water management designs for the developed Site are finalized. The detailed water balance for the site is provided in the attached **Table 2**.

4.1 Water Balance Targets

Under the pre-development scenario the site is considered largely impervious. The predicted annual groundwater infiltration volume, providing recharge for shallow groundwater at the site under current predevelopment land use is estimated at 48,103 m³. Under the post-development scenario rates of evapotranspiration and infiltration are expected to decrease and the rate of runoff of precipitation will increase due to the increase in impermeable surface across the project area. Under the current plan of development, the un-mitigated infiltration across the site is anticipated at 39,484 m³ following site development with a post development annual infiltration deficit estimated at 8,619 m³.

It is expected that roof leaders for residential lots will discharge overland for infiltration. For the purposes of consideration of the mitigated water balance it was considered that the discharge of roof runoff to the rear yard area would account for half of the discharge from 50% of rooftop coverage (total of 25% runoff reduction), It is expected that front yards draining 50% of rooftop runoff would drain to the ROW and would be directed to the SWP block. It is expected that through discharging roof runoff to overland flow that an additional 4,781 m³ of runoff would be directed to infiltration.

The remaining pre-development infiltration deficit of approximately 3,838 m³ would be directed to infiltration through the implementation of an infiltration gallery within the SWMP block at the proposed headwall HW3 structure. It is understood that the infiltration gallery design will be provided as part of detailed design. Infiltration testing within the area proposed for an infiltration gallery will be required once the location and design have been finalized.

Given the hydrogeological function of the site to provide recharge for shallow groundwater, with groundwater discharge expected to Bronte Creek, and associated tributaries and wetland areas. The primary water balance consideration following site development for underlying ground water would be for the maintenance of the pre-development rates of infiltration across the site following a Best Management Practice approach. We are of the understanding that an infiltration galley has been proposed for the development to meet the development target for maintaining rates of per-development infiltration across the Site following development. Details of the infiltration galley are provided in the FSR prepared by Crozier.

5 Servicing Assessment

5.1 Private Water Supply Considerations

Confirmation of potable water for the purpose of water servicing for residential demand is proposed to be completed as part of detailed design under a condition of draft plan approval. For the purposes of obtaining approvals for the draft plan of sub-division the feasibility of water servicing was assessed through a review of well yield provided within surrounding well records as summarized in Section 3.4 above.

Under Procedure D-5-5 the minimum well yield required for residential supply would be based on the per-person requirement of 450 L/day, with peak demand based on a rate of 3.75 L/min over a period of 120 minutes. Based on the expected design of 4-bedroom dwellings with five residents the expected daily water demand would be 18.75 L/day, with a daily volume of 2,250 L/day.

Domestic potable supply wells are reported to be completed within overburden deposits expected to consist of sand and gravel to gravel directly overlying limestone bedrock at depths ranging from 22 to 25 m below grade, or within the shallow bedrock at depths less than 30.5 m. It is anticipated that overburden deposits will provide for flow rates of at least 18.9 L/day (approximately 3% of 228 well records provided for flows of 18.9 L/min or less). Bedrock has expected yields of 37.8 L/min or greater (upwards of 113.4 L/min).

Given that daily residential demand requirements are expected below the expected yield for shallow bedrock it is expected that water taking would not result in significant drawdown, and as such, interference effects between wells competed for proposed lots and for existing private water supply wells is expected to be minimal. Further confirmation of water servicing will be competed through the completion of a well survey, test well drilling, monitoring, and completion of pumping tests and groundwater sampling.

The following scope of work will be required for confirmation of private water servicing for the proposed residential lots, which will be completed and reported under separate reporting, proposed to be submitted as part of the detailed design submission for the proposed development:

- <u>Private Well Survey</u>: A private well survey would be completed for properties completed within a 250 m radius of the Site. The private well survey will be completed to verify locations of private water supply wells and to interview residents regarding the construction details and operation history for installed private water supply wells. As part of the well survey permission for well monitoring will be requested during the test well program detailed below.
- <u>Establish On-Site and Off-Site Well Montoring Program</u>. A network of both on-site and off-site
 monitoring wells will be established prior to the start of pumping tests for on-site test wells.
 Shallow monitoring well locations on-site would be monitored, including off-site private wells
 where permission to monitor is provided by the property owner. Water levels would be
 monitored the week prior, during, and one week following completion of well testing.
 Consideration would be provided for the installation of datalogging pressure transducers within
 selected wells over the duration of monitoring.

- <u>Completion of Test Wells</u>: Three test wells will be completed on-site, in compliance with guidelines within Procedure D-5-5 given the developable area of 5.973 ha (three test wells for sites of 15 ha or less). Test wells will be located such that they can be used for the proposed development. The target depth for test wells will depend primarily on the conditions encountered. It is expected to drill test wells to the top of bedrock. If yields are not expected to meet residential demand wells will be extended within bedrock deposits. It is expected that well depth will not extend past depths of 30.5 m, however, it is expected that deeper bedrock deposits will provide for suitable residential supply if necessary. If adequate yields are not encountered within shallow bedrock well casing will be extended into deep bedrock to maintain separation between shallow and deep bedrock aquifers.
- <u>Completion of Pumping Tests</u>: Pumping tests for each of the three completed test wells will be completed simultaneously to confirm suitable yield and groundwater quality for residential supply. Pumping tests will be completed over the duration of six-hours or extended to withdrawal twice the daily residential demand (4,500 L) at the expected sustainable yield determined during test well drilling/well development.
- <u>Groundwater Sampling Program</u>: Groundwater sampling would be competed for each test well
 over three sampling events to confirm potability for residential use and to assess the for the
 potential degradation of groundwater quality wit taking. Groundwater quality would be analyzed
 for O.Reg. 169/03 including Schedule 1 and partial Schedule 2 (metals and inorganics)
 parameters. Groundwater sampling would be completed for private monitoring wells prior to
 and following completion of testing for potential parameters of concern including microbiology,
 nitrate, sodium, and chloride.

5.2 Sewage System Design for Proposed Development

The highest stabilized groundwater level was recorded at an elevation of 312.86 m, or 4.29 m below existing grades, in monitoring well BH3 on July 18, 2024. The highest groundwater level should be considered for designing the base of the proposed septic bed.

The percolation rate of the subsoil profile beneath the Site was confirmed by T-Time testing completed on three available soil samples as summarized in the **Table 5-1**:

BH ID	Sample ID	Depth (mbgs)	Elevation (masl)	Soil Media	Percolation Time (min/cm)	Estimated Percolation Rate(mm/h)
1	7	6.10	306.9	Clayey Silt, trace sand	58	10.3
3	7	2.30	314.8	Silt and Sand, trace clay	45	13.3
5	3	1.54	315.3	Silty Sand, trace clay	11	54.5

 Table 5-1 - Percolation Rate using T-Time Test

mbgs- metres below ground surface masl- metres above sea level

Shallow native soils underlying tile beds consist of silty sand with expected percolation rates (T-times) of 11 min/cm. Preliminary tile bed design is proposed to consist of a conventional Class IV in-ground leaching bed with advance tertiary treatment (with standard tertiary treatment for lots 1 and 12), for subsurface discharge of sewage effluent. Preliminary design parameters are provided for the construction of Class IV

leaching beds with tertiary treatment to service residential lots. It is anticipated that maximum peak sewage flows from the new septic systems will be approximately 3,600 L/day based the proposed servicing design prepared by Crozier. The length of distribution pipe, given that tertiary treatment units are proposed for residential lots are based on the following equation:

L=QT/300

Where: L is the length of distribution pipe in metres

- Q is the design sewage flows (3,600 L/day)
- T is the percolation rate of the underlying native subgrade (11 min/cm)

Given the sanitary design flows and the expected percolation rate for the shallow native subgrade leaching beds are expected to be comprised of 132 m of distribution pipe, which is expected to consist of 11 runs or 12 m pipe. With 1.6 m between runs of pie leaching bed dimensions are expected at 16 m by 12 m.

Based on the review of the sewage needs estimates provided for the proposed residential development, being below 10,000 litres per day, no approval for a proposed sewage works from the MECP is anticipated. An approval for the proposed on-site septic sewage system can likely be obtained through the Ontario Building Code through the local municipality.

Given the prevalent soil conditions (silty sand) it is expected that the tile bed will be constructed as an inground bed. Setbacks from the tile bed and sewage treatment facility will be required as follows:

	Distribution Pipe Clearances (m)
Structure	5
Well with a watertight	15
casing to a depth of 6 m	
Any other well	30
Surface water	15
Spring not used as a	15
source of potable water	
Property line	3

Table 5-2 - Summary of Setback Clearances

6 Nitrate Loading Impact Assessment

A nitrate loading impact assessment was conducted for nitrate to determine the anticipated concentration that can be predicted at the hydraulically down-gradient Site boundary based on the establishment of individual on-site septic sewage system to service each proposed residential lot. The assessment is based on The Ministry of the Environment Conservation and Parks (MECP) guideline D-5-4 for individual on-site sewage systems. The assessment assumes natural attenuation for nitrate in shallow groundwater through dilution from infiltration of precipitation and from sewage system loading due to the proposed residential dwellings.

A monthly water balance model (the Thornthwaithe water-balance program) provided by the U.S. Geological Survey (USGS, 2007) was used to determine the average infiltration rate at the Site. The long-term precipitation data were collected from the Canadian Climate Normal between 1981 and 2010 from the Government of Canada website for the Guelph Turfgrass Institute weather station located approximately 14 km to the north of the Site.

The approximate infiltration rate for the Site was determined, based on the 30-year climate normal for precipitation. A mass balance calculation was completed for nitrate at the Site, which was assessed based on use of both conventional and tertiary treatment for sewage effluent input to septic leaching beds, with the concentration of nitrate loading to groundwater set at 40 mg/L for use of conventional effluent treatment, at 20 mg/L for tertiary effluent treatment, and at 15 mg/L for advanced tertiary effluent treatment, respectively.

Background nitrate concentration was measured at monitoring wells BH2, BH3 and BH5. Groundwater samples were collected on February 7, 2023. Upon sampling, bottles were placed in ice and packed in a cooler at about 4.0° C for shipment to the analytical laboratory. Sample analysis was performed by SGS, a third-party laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA). The samples were compared to confirm nitrite, nitrate, Total Phosphorous (TP), ammonia and pH of the groundwater beneath the Site. Nitrate concentrations in shallow groundwater were assessed based on sampling completed on August 6, 2024, with nitrate concentrations in groundwater measured at 0.37, 1.54, 6.10, and 1.66 mg/L within BH1, BH2, BH3, and BH5 respectively.

A total of 21 residential lots are proposed with lot size ranging from 1,940 m² to 3,820 m². Septic leaching beds are proposed with approximate dimensions of 16 m by 23 m. As such, an area of 368 m² was considered as the septic bed area for the current assessment. The average flow rate of 1,000 L/day per residence was considered for the nitrate loading impact assessment.

Nitrate loading was assessed on a single lot basis based on the expected infiltration rate, given the proposed lot area. Nitrate loading calculations were assessed as follows:

 C_{pb} = [(Ci x Vi) + (Cs xVs)]/[Vi +Vs]

Ci = concentration of nitrate in precipitation, taken at 0.1 mg/L.

Vi= Annual volume of recharge (i.e. lot area less impervious surfaces x annual infiltration rate (liters)).

Where:

- Cs = Nitrate concentration in sewage set at 40 mg/L for conventional septic systems, at 20 mg/L for septic systems having tertiary treatment, and at 15 mg/L for advanced tertiary treatment system.
- Vs = Volume of sewage where 1,000 L/day of sewage has been considered for each lot.
- Cpb = Concentration of nitrate modeled for the Site boundary based on the mass balance approach

Based on the mass balance calculation, the predicted nitrate concentration assessed for the down-gradient lot boundary for each lot is calculated without considering background nitrate in groundwater. Details are presented in the following **Table 6-1**:

Lot Size (m ²)	Lot No	Lot No Conventional Treatment (40 mg/L) Tertiary Treatment (20 mg/L)		Advanced Tertiary Treatment (15 mg/L)	
1,940	18	17.57 mg/L	8.81 mg/L	6.62 mg/L	
1,950	19, 20	17.52 mg/L	8.79 mg/L	6.60 mg/L	
1,960	15	17.47 mg/L	8.76 mg/L	6.59 mg/L	
1,970	16, 17, 21	17.42 mg/L	8.74 mg/L	6.57 mg/L	
1,980	7	17.37 mg/L	8.71 mg/L	6.55 mg/L	
1,990	4	17.32 mg/L	8.69 mg/L	6.53 mg/L	
2,000	6, 8, 9, 11	17.27 mg/L	8.66 mg/L	6.51 mg/L	
2,020	2	17.17 mg/L	8.62 mg/L	6.48 mg/L	
2,030	13	17.12 mg/L	8.59 mg/L	6.46 mg/L	
2,040	3	17.08 mg/L	8.57 mg/L	6.44 mg/L	
2,050	10	17.03 mg/L	8.54 mg/L	6.42 mg/L	
2,060	5	16.98 mg/L	8.52 mg/L	6.40 mg/L	
2,090	14	16.84 mg/L	8.45 mg/L	6.35 mg/L	
2,530	1	15.02 mg/L	7.54 mg/L	5.67 mg/L	
3,820	12	11.41 mg/L	5.74 mg/L	4.32 mg/L	

 Table 6-1 - Predicted Nitrate Concentration at Down-Gradient Property Limit (Without Background)

The total predicted nitrate concentration was assessed for the down-gradient lot boundary for each lot including the geometric mean of background nitrate. The geomean of the nitrate concentration in groundwater was calculated at 1.55 mg/L based on nitrate concentrations measured in August 2024. Total anticipated nitrate concentration for the down-gradient of the lots is summarized in the following **Table 6-2**:

Lot Size (m²)	Lot No	Lot No Conventional Tertiary Treatment Treatment (40 mg/L) (20 mg/L)		Advanced Tertiary Treatment (15 mg/L)	
1,940	18	19.12 mg/L	10.36 mg/L	8.17 mg/L	
1,950	19, 20	19.07 mg/L	10.34 mg/L	8.15 mg/L	
1,960	15	19.02 mg/L	10.31 mg/L	8.14 mg/L	
1,970	16, 17, 21	18.97 mg/L	10.29 mg/L	8.12 mg/L	
1,980	7	18.92 mg/L	10.26 mg/L	8.10 mg/L	
1,990	4	18.87 mg/L	10.24 mg/L	8.08 mg/L	
2,000	6, 8, 9, 11	18.82 mg/L	10.21 mg/L	8.06 mg/L	
2,020	2	18.72 mg/L	10.17 mg/L	8.03 mg/L	
2,030	13	18.67 mg/L	10.14 mg/L	8.01 mg/L	

Table 6-2 - Total Predicted Nitrate Concentration at Down-Gradient Property Limit

Lot Size (m ²)	Lot No	Lot No Conventional Treatment (40 mg/L) (20 mg/L)		Advanced Tertiary Treatment (15 mg/L)
2,040	3	18.63 mg/L	10.12 mg/L	7.99 mg/L
2,050	10	18.58 mg/L	10.09 mg/L	7.97 mg/L
2,060	5	18.53 mg/L	10.07 mg/L	7.95 mg/L
2,090	14	18.39 mg/L	10.00 mg/L	7.90 mg/L
2,530	1	16.57 mg/L	9.09 mg/L	7.22 mg/L
3,820	12	12.96 mg/L	7.29 mg/L	5.87 mg/L

Example calculations are provided in the attached **Appendix F**. Based on the completed nitrate impact calculations it is expected that standard tertiary treatment (20 mg/L of nitrate) would be acceptable to meet a concentration of 10 mg/L at the downgradient property boundary for lots 1 and 12, and advanced tertiary treatment (15 mg/L of nitrate) would be required for the remainder of lots (0.194 ha to 0.209 ha).

It should be noted that additional dilution from assessed groundwater underflow beneath the Site has not been considered for the assessment (all above mentioned scenarios), so the results are considered a conservative evaluation.

7 Environmental Impact Analysis

Environmental impacts for sewage disposal at the Site were assessed given the requirements for tertiary treatment as discussed in Section 6.0 above. Bronte Creek south of the site was considered as the primary effluent receiver for septic effluent. The primary parameters of concern for surface water were considered as nitrate and total phosphorus. The target criteria for nitrate to surface water considered is the nitrate limit of 2.93 mg/L based on the Canadian Water Quality Guidelines (CWQG) and total phosphorus concentrations of 0.03 mg/L for rivers and streams from the Provincial Water Quality Objectives (PWQO).

Surface water sampling was completed for Bronte Creek south of the site on August 6, 2024. Concentrations of nitrate in surface water were measured at 1.92 mg/L, and total phosphorus concentrations were non detectable (i.e., <0.02 mg/L). Nitrate impacts to surface water were evaluated based on a site wide mass balance approach as determined by the following equation:

$C_{\mathsf{PB}} = (\mathsf{V}_{\mathsf{s}} \times \mathsf{L} \times \mathsf{C}_{\mathsf{s}})/[(\mathsf{I} \times \mathsf{A}) + (\mathsf{Vs} \times \mathsf{L})]$

 $\begin{array}{l} \mbox{Where: } C_{\text{PB}} \mbox{ is the concentration of nitrate at the property boundary (mg/L);} \\ V_{s} \mbox{ is the average annual sewage flow per lot (365 m^{3}/yr);} \\ L \mbox{ is the number of proposed lots (21);} \\ C_{s} \mbox{ is the effluent nitrate concentration (15 mg/L);} \\ I \mbox{ is the infiltration rate for the native subgrade consisting of silty sand (0.175 m/yr); and,} \\ A \mbox{ is the site area (231,040 m^{2}).} \end{array}$

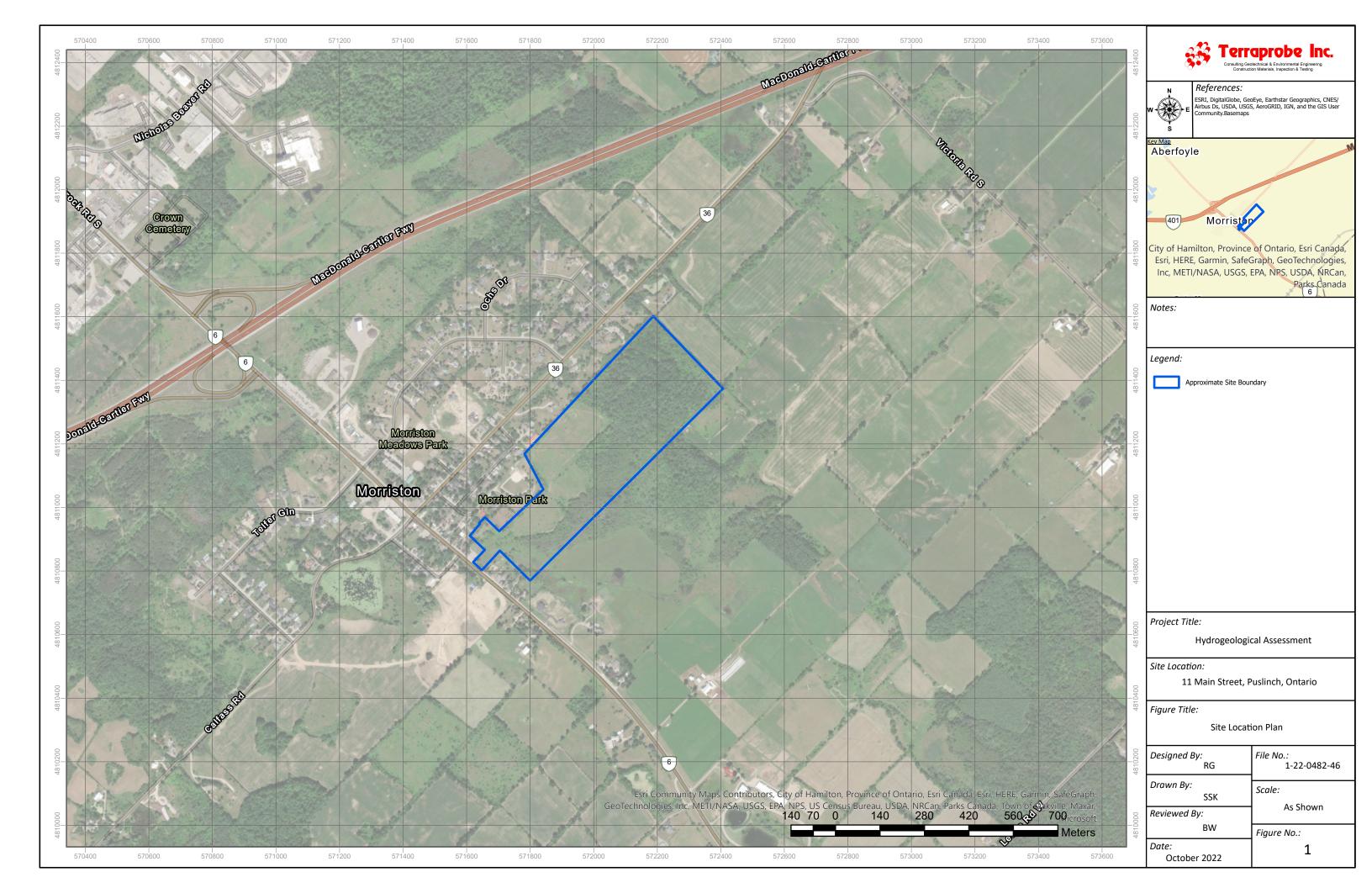
Based on the above equation the nitrate concentration expected towards Bronte Creek flowing immediately south of the Site is expected at 2.39 mg/L provided advanced tertiary treatment systems are utilized for residential lots as recommended under Section 5.0 above. Nitrate impacts to surface water in exceedance of the CWQG limit of 2.93 mg/L are not expected due to the proposed development.

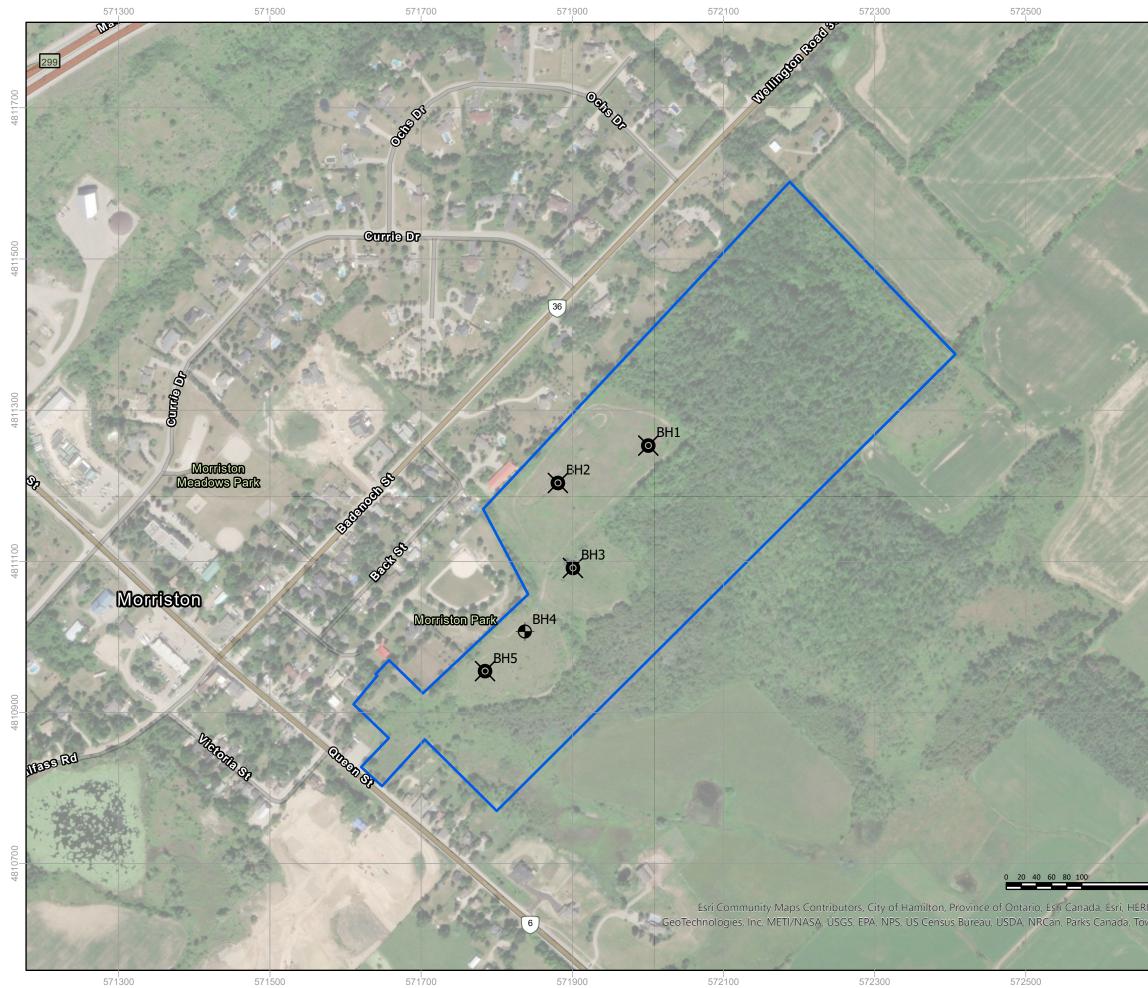
Potential impacts to surface water because of total phosphorus were evaluated through the assessment of potential travel times for sewage effluent given the measured hydraulic conductivity of 1.2 x 10⁻⁶ m/s for silty sand deposits as measured at BH2 and BH3. It is expected that separation distances from proposed residential lots to Bronte Creek range from approximately 30 m for lots backing to buffers surrounding Bronte Creek (i.e., Lots 1, 2, and 7) to approximately 150 m for lots towards the norther property limit (i.e., Lots 15, 16, and 17). The expected travel time for sewage effluent is expected to range from 0.8 years to 4 years based on the separation distances from proposed lots to Bronte Creek. It is expected that soils will have attenuative capacity to allow for dilution of total phosphorus such that significant impacts to surface water is not expected.

Potential impacts to groundwater because of microbial pathogens from the sewage effluent were also considered. A risk of contamination from microbial pathogens exists within areas where high rates of groundwater flow are expected including coarsely textured soils or fractured or karstic bedrock environments. Given the prevalent soil conditions of silty sand overlying clayey silt, and the depth to bedrock impacts to groundwater due to microbial pathogens is not expected.

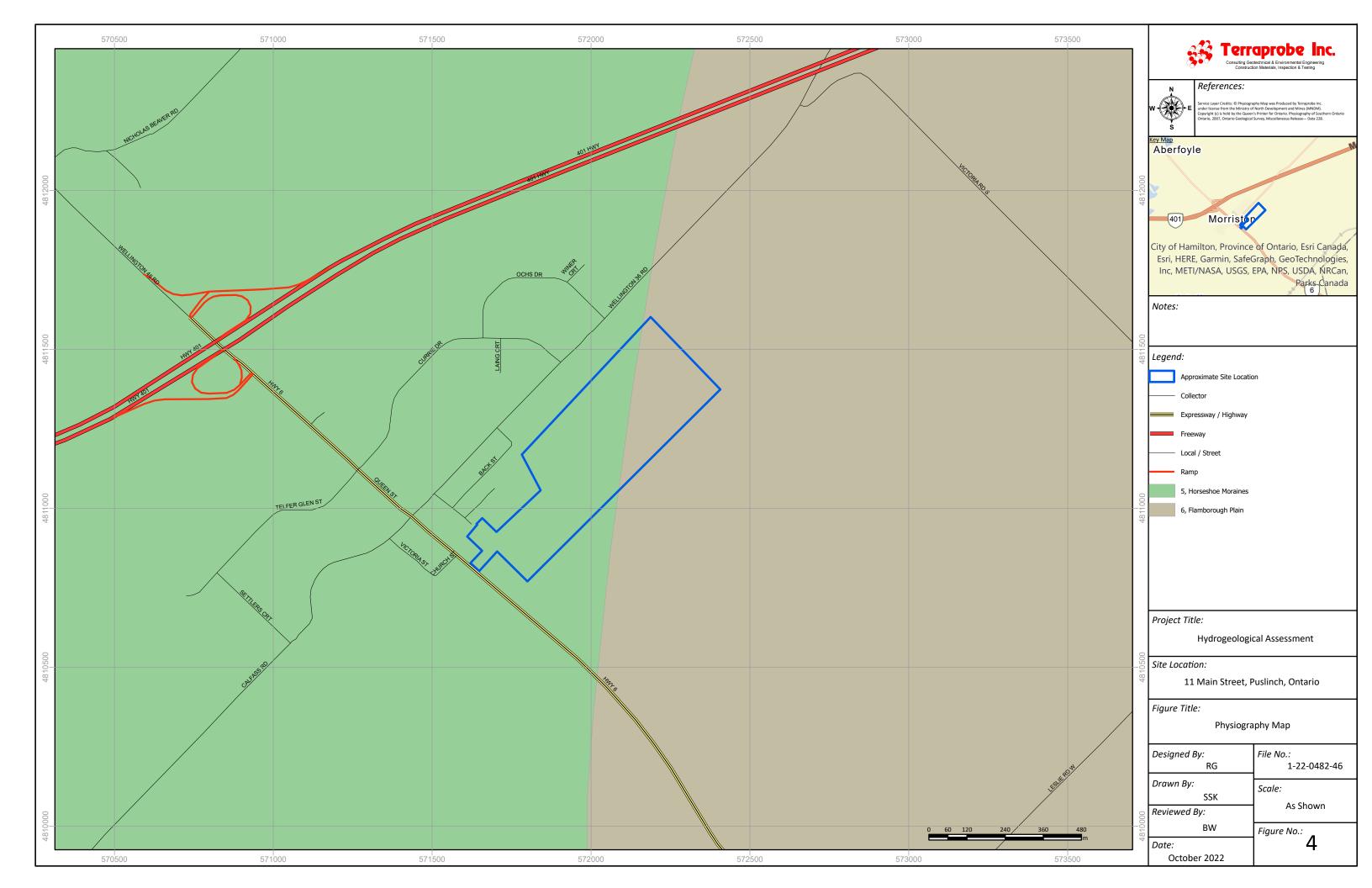
8 Summary and Conclusions

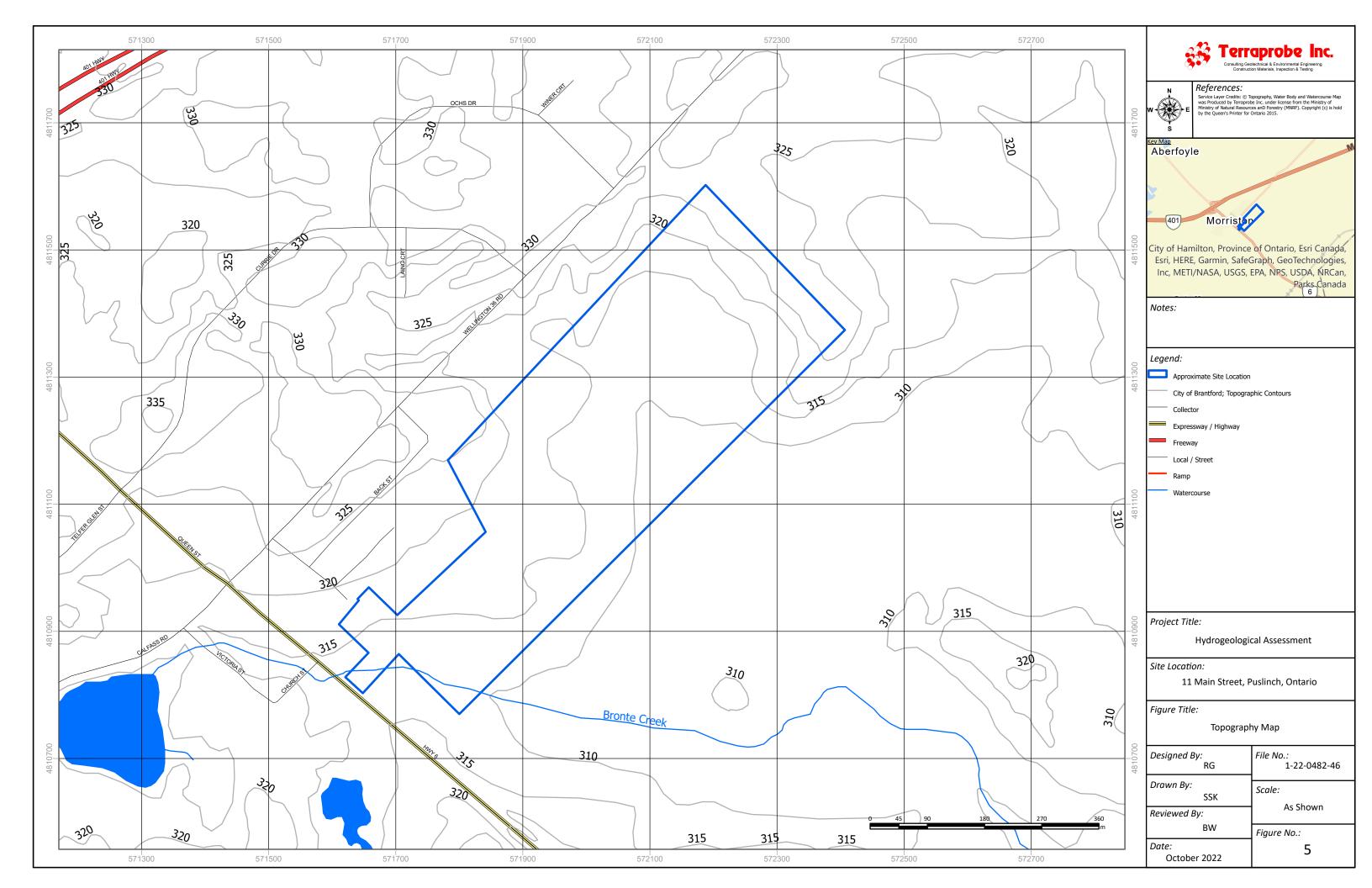
Based on the results of the investigation, the following summary and conclusions are provided:

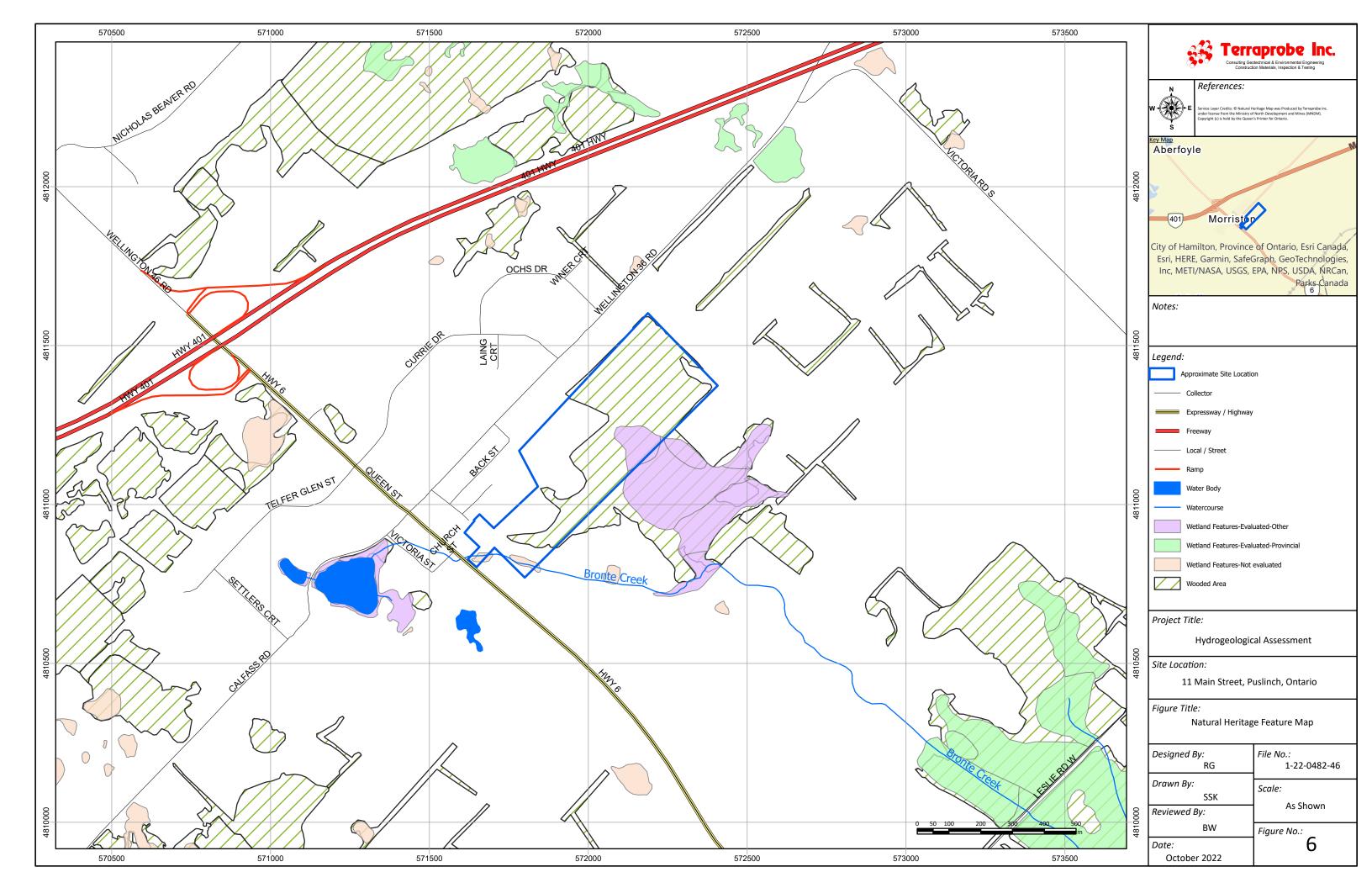

- i. The Site is located within physiographic regions of Southern Ontario known as the Horseshoe Moraines (within the north, central, and west portions) and partially in Flamborough Plain (within the southeast and east portions). The Horseshoe Moraines within the vicinity of the Site comprises a Till Moraines, and Flamborough Plain consists of Limestone Plains physiographic feature. The Site is located within Bronte Creek Watershed within the jurisdiction of Conservation Halton. The headwaters of the Bronte Creek are generated to the northwest of the Site and flows southeasterly direction crossing the southwest portion of the Site.
- ii. Based on a review of local well records, the primary water supply aquifer consists of overburden deposits expected at the contact between overburden and bedrock, or within the Guelph Formation at depths less than 30.5 m below existing grades. Wells were also noted within deep bedrock understood to be the Amabel Formation at depths typically greater than 35.1 m below existing grades. Reported flow rates are typically greater than 18.9 L/min and are expected to range from 37.8 L/min to 75.6 L/min, considered suitable for residential supply.
- iii. Boreholes were completed to various depths between 6.6 m to 8.1 m below grade (elevations ranging from 313.3 m to 306.4 m). The subsurface conditions encountered at the Site generally consisted of sand fill overlying silty sand and clayey silt (within BH1) to the completed depth of investigation.
- iv. Groundwater elevations are noted highest at BH3 at an elevation of 312.8 m which forms a local groundwater divide with groundwater flow to the east of the site directed to the tributary of Bronte Creek and associated wetlands, and flow to the west directed to Bronte Creek. Local groundwater flow will be influenced by topography and surface water features. Residential properties along Badenoch Street north of the site are considered as upgradient of the site, with Bronte Creek, and associated tributaries and wetlands located downgradient.
- v. Hydraulic conductivity testing was carried out within monitoring wells installed at BH2 and BH3, screened within silty sand. Hydraulic conductivity of the shallow native subgrade was measures at 1.2×10^{-6} m/s.
- vi. Shallow groundwater quality was observed to be within drinking water standards and is not considered to represent a potential source of contamination for the underlying bedrock aquifer. Further soils across the site were noted to consist of silty sand to sand and silt overlying clayey silt with bedrock depth reported through well records at depths of approximately 24 m (80 feet). It is expected that the underlying bedrock aquifer is geologically isolated from surrounding land use impacts including subsurface sewage disposal and agricultural uses.
- vii. An infiltration deficit of approximately 8,619 m³ is expected following site development. It is expected that the pre-development water balance at the site can be maintained following a Best Management Practice approach utilizing proposed site grading and through directing rooftop runoff to infiltration where feasible. It is understood that an infiltration gallery is proposed within the SWP block, near the headwall structure HW3.

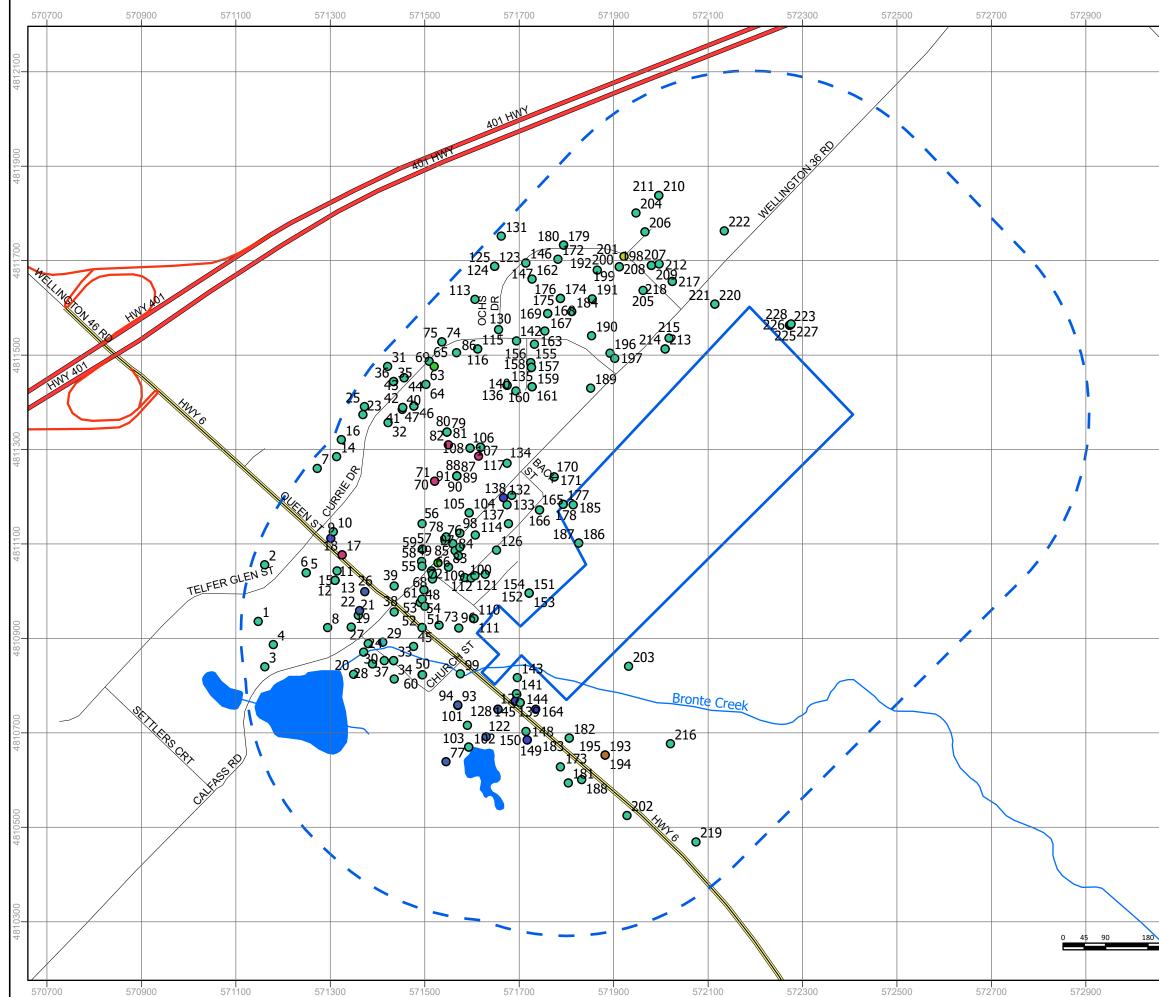

- viii. Based on a review of well records groundwater yields typically range from 37.8 L/min to 94.5 L/min, with the expected water demand of 18.9 L/min to meet peak demand. Given that daily residential demand requirements are expected below the expected yield for shallow bedrock it is expected that water taking would not result in significant drawdown, and as such, interference effects between wells competed for proposed lots and for existing private water supply wells is expected to be minimal. Further confirmation of water servicing will be competed through the completion of a well survey, test well drilling, monitoring, and completion of pumping tests and groundwater sampling.
- ix. Given the sanitary design flows of 3,600 L/day, with use of tertiary treatment units, and the expected percolation rate for the shallow native subgrade of 11 min/cm for silty sand soils, leaching beds are expected to be comprised of 132 m of distribution pipe, which is expected to consist of 11 runs of 12 m pipe. With 1.6 m between runs of pie leaching bed dimensions are expected at 16 m by 12 m.
- x. Based on the completed nitrate impact calculations it is expected that standard tertiary treatment (20 mg/L of nitrate) would be acceptable to meet a concentration of 10 mg/L at the downgradient property boundary for lots 1 and 12, and advanced tertiary treatment (15 mg/L of nitrate) would be required for the remainder of lots (0.194 ha to 0.209 ha).
- xi. Surface water sampling was completed for Bronte Creek south of the site on August 6, 2024. Concentrations of nitrate in surface water were measured at 1.92 mg/L, and total phosphorus concentrations were non detectable (i.e., <0.02 mg/L).
- xii. Based on completion of a mass balance analysis given the site area of 23.104 ha the nitrate concentration expected towards Bronte Creek flowing immediately south of the Site is expected at 2.39 mg/L provided advanced tertiary treatment systems are utilized capable of reducing nitrate concentrations in sewage effluent to 15 mg/L. Nitrate impacts to surface water in exceedance of the CWQG limit of 2.93 mg/L are not expected due to the proposed development.
- xiii. The expected travel time for sewage effluent is expected to range from 0.8 years to 4 years based on the separation distances from proposed lots to Bronte Creek. It is expected that soils will have attenuative capacity to allow for dilution of total phosphorus such that significant impacts to surface water is not expected.
- xiv. Potential impacts to groundwater because of microbial pathogens from the sewage effluent were also considered. A risk of contamination from microbial pathogens exists within areas where high rates of groundwater flow are expected including coarsely textured soils or fractured or karstic bedrock environments. Given the prevalent soil conditions of silty sand overlying clayey silt, and the depth to bedrock impacts to groundwater due to microbial pathogens is not expected.

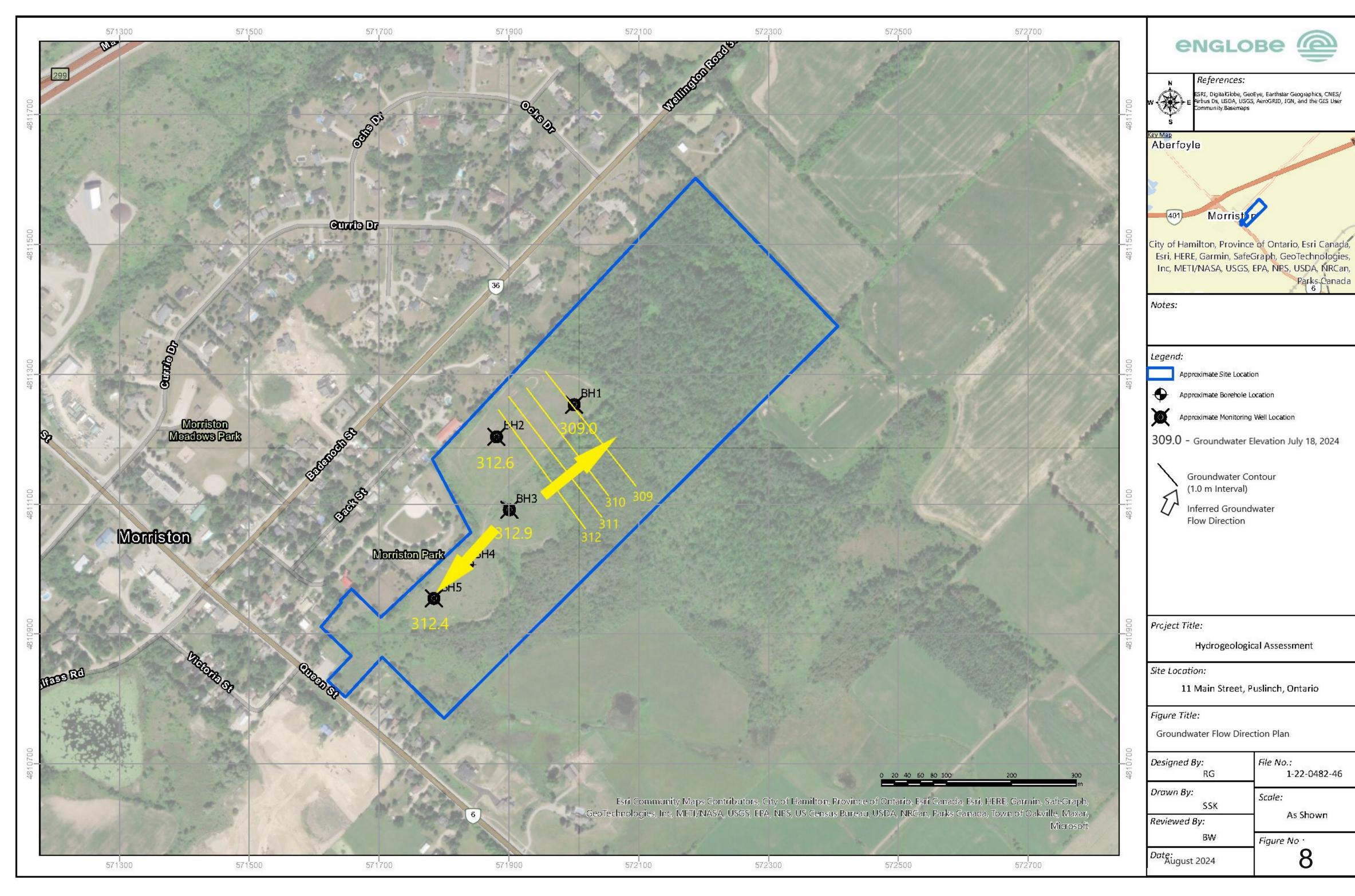
Figures and Tables








572700	and Terraprobe Inc.
BERN CO	Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing
4811700	N W S S References: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/ Airbus Ds, USDA, USGS, AeroGRID, IGN, and the GIS User community.Basemaps
	Aberfoyle
4811500	401 Morriston City of Hamilton, Province of Ontario, Esri Canada, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, USDA, NRCan, Parks Canada 6
N STAR	Notes:
4811300	Legend: Approximate Site Location Approximate Borehole Location X Approximate Monitoring Well Location
4811100	
0	Particul Title
4810900	Project Title: Hydrogeological Assessment
	Site Location: 11 Main Street, Puslinch, Ontario
	Figure Title: Borehole and Monitoring Well Plan
200 300 4810,000	Designed By: RG File No.: 1-22-0482-46
E, Garmin, SafeGraph, vn of Oakville, Maxar, Microsoft	Drawn By: SSK Reviewed By: SCale: As Shown
572700	BW Figure No.: Date: October 2022



573100 573300						
				8	Consulting Ge Construct	otechnical & Environmental Engineering tion Materials, Inspection & Testing
	L.		4812100	N	References:	
	COR		48	w-	USDA, USGS, AeroGRID, IG	, Earthstar Geographics, CNES/Airbus Ds, N, and the GIS User Community produced by c) Queen's Printer 2020. Water Well
	LICTORIA RDS			s	Information System Ministr Conservation and Parks, 20	ry of the Environment.
			0	Aberfoyl	e	M
		\land	4811900			
			4			
				401	Morristor	2
			00	401	WOTTSTO	\square
			4811700			e of Ontario, Esri Canada, Graph, GeoTechnologies,
						EPA, NPS, USDA, NRCan, Parks Canada
					~	Farks-Carlada
			4811500	Notes:		
			4811			
				Legend:	vimate Cite Leastion	
					ximate Site Location ximate Study Area; 500)m
			4811300	Unkno	wn	
			48		loned-Other	
				 Aband Alterat 	loned-Quality tion	
			0(Observ	vation Wells	
			4811100	Other		
			7		Supply	
					course	
			006	Collec	tor ssway / Highway	
			4810900	Freew		
				Local ,	/ Street	
				Project Titl	le:	
			4810700	-		cal Assessment
			481	Site Locatio	on:	
						Puslinch, Ontario
			0	Figure Title	2:	
			4810500	.gale net	 MECP Well Re	ecords Map
			4	Designed		File No.:
				Designed B	RG	1-22-0482-46
			300	Drawn By:	SSK	Scale:
	270 360		4810300	Reviewed E		As Shown
	m				BW	Figure No.:
579	100 573	3300		<i>Date:</i> Octobe	er 2022	7
513	100 073	0000				1

Table 1: Results of Groundwater/Surface Water Quality Analysis Proposed Residential Development 11 Main Street Puslinch, Ontario

Sampling Date/Time								
Well Location				BH1	BH2	BH3	BH5	BC Surface
	ODWS	AO/OG	Units					
INORGANICS								
Ammonia as N			mg/L	<0.02	<0.02	<0.02	< 0.02	< 0.02
Electrical Conductivity			μS/cm	588	567	1,310	524	2,490
Total Organic Carbon			mg/L	1.0	0.7	1.0	0.8	8.8
Ortho Phosphate as P			mg/L	< 0.10	<0.10	<0.10	<0.10	<0.26
Total Phosphorus			mg/L	<0.02	<0.02	<0.02	< 0.02	< 0.02
pH		6.5-8.5	pН	7.76	7.82	7.68	7.80	8.00
Sulphate		500	mg/L	6.89	14.4	26.9	3.35	22.8
Fluoride	1.0		mg/L	0.08	0.08	<0.05	0.08	< 0.05
Bromide	1.5		mg/L	<0.05	<0.05	<0.05	< 0.05	< 0.11
Alkalinity (as CaCO3)		30-500	mg/L	257	281	347	281	357
Chloride		250	mg/L	34.4	17.3	202	4.70	476
Nitrite as N	1.0		mg/L	<0.05	<0.05	<0.05	< 0.05	< 0.11
Nitrate as N	10.0		mg/L	0.37	1.54	6.10	1.66	1.92
True Colour		5	TCU	<2.50	<2.50	<2.50	<2.50	15.5
Turbidity		5	NTU	0.7	0.8	<0.5	1.0	8.2
·								
Ammonia-Un-ionized (Calculated)			mg/L	n/a	n/a	n/a	n/a	< 0.000002
Bicarbonate (as CaCO3)			mg/L	257	281	347	281	357
Total Dissolved Solids		500	mg/L	362	354	824	290	1,200
Carbonate (as CaCO3)			mg/L	<5	<5	<5	<5	<5
Hydroxide (as CaCO3)			me/L	<5	<5	<5	<5	<5
Hardness (as CaCO3) (Calculated)		80-100	mg/L	306	321	452	301	412
Langelier Index (Calculated)			N/A	0.796	0.915	0.976	0.897	1.27
Saturation pH (Calculated)			N/A	6.96	6.90	6.70	6.90	6.73
		1						
Dissolved Aluminum		0.1	mg/L	< 0.004	0.007	0.004	0.009	0.004
Dissolved Antimony	0.006		mg/L	< 0.001	< 0.001	< 0.001	< 0.001	<0.003
Dissolved Arsenic	0.025		mg/L	<0.001	< 0.001	<0.001	<0.001	<0.003
Dissolved Barium	1		mg/L	0.016	0.054	0.071	0.010	0.090
Dissolved Beryllium			mg/L	<0.0005	<0.0005	<0.0005	< 0.0005	<0.001
Dissolved Boron			mg/L	0.137	0.166	0.169	0.144	0.193
Dissolved Cadmium	0.005		mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001
Dissolved Calcium			mg/L	76.5	74.1	112	70.0	109
Dissolved Chromium	0.05		mg/L	<0.002	<0.002	<0.002	< 0.002	<0.003
Dissolved Cobalt			mg/L	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005
Dissolved Copper		1	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	0.006
Dissolved Iron		0.3	mg/L	<0.020	<0.020	<0.020	<0.020	1.29
Dissolved Lead	0.01		mg/L	<0.0005	<0.0005	<0.0005	< 0.0005	0.0034
Dissolved Magnesium			mg/L	27.9	33.0	41.9	30.6	34.0
Dissolved Manganese		0.05	mg/L	< 0.002	< 0.002	0.005	< 0.002	0.294
Dissolved Mercury			mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dissolved Molybdenum			mg/L	<0.002	< 0.002	<0.002	< 0.002	< 0.002
Dissolved Nickel			mg/L	< 0.001	0.001	0.001	< 0.001	< 0.003
Dissolved Potassium			mg/L	<0.50	0.93	2.75	<0.50	5.68
Dissolved Selenium	0.01		mg/L	< 0.001	< 0.001	0.001	< 0.001	< 0.002
Dissolved Silver			mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dissolved Sodium		20/200	mg/L	12.2	10.4	117	3.99	309
Dissolved Strontium			mg/L	0.062	0.074	0.123	0.052	0.282
Dissolved Thallium			mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Dissolved Tin			mg/L	< 0.002	< 0.002	<0.002	< 0.002	< 0.002
			mg/L	< 0.003	< 0.003	<0.003	< 0.003	< 0.010
Dissolved Titanium							< 0.010	< 0.010
Dissolved Titanium Dissolved Tungsten			mg/L	< 0.010	< 0.010	< 0.010	<0.010	V0.010
Dissolved Tungsten	0.02		_	<0.010 <0.0005	<0.010	<0.0005	< 0.010	<0.0005
	0.02		mg/L		0.0012			<0.0005
Dissolved Tungsten Dissolved Uranium	0.02	5	_	< 0.0005		<0.0005	<0.0005	

NTU - Nephelometric Turbidity Unit

TCU - True Colour Unit

ODWS - Ontario Drinking Water Standards

AO/OG - Aesthetic Objectives/ Operational Guidelines

1. Climate Information

Precipitation Evapotranspiration Water Surplus	958 mm/a 611 mm/a 347 mm/a	
2. Infiltration Rates		
Table 2 Approach - Infiltration Factors Flat and Rolling Land Open Sandy Loam and Clay and Loam Cover-Cultivated and Wooded Areas TOTAL	0.15 0.3 0.15 0.6	
Infiltration (0.6 x 347) Run-off (347 - 208)	208 mm/a 139 mm/a	
3. Property Statistics		
Single Detached Residential Storm Water Management Environmental Protection Lands Additional Lands Roads	4.44 ha 0.35 ha 17.13 ha 0.06 ha 1.13 ha	44,360 m ² 3,450 m ² 171,310 m ² 590 m ² 11,330 m ²
TOTAL	23.10 ha	231,040 m ²
4. Lot Coverage Single Detached Residential		
Roof Coverage (50% of 44,360 m ²)	2.22 ha	22,180 m ²
Driveway Coverage (10% of 44,360 m ²)	0.44 ha	4,436 m ²
Landscape (40% of 44,360 m ²)	1.77 ha	17,744 m ²
TOTAL	4.44 ha	44,360 m ²

5. Annual Pre-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Undeveloped	231,040	221,336	141,165	48,103	32,068

6. Annual Post-Development Water Balance (Un-Mitigated)

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building Coverage	22,180	21,248	2,125	nil	19,124
(Residential)					
Hard surfaces	19,216	18,409	1,841	nil	16,568
(Roads, Driveways, SWM)					
Pervious Areas (Environmental	189,644	181,679	115,872	39,484	26,323
Protection Lands, Additional Lands)					
TOTAL	231,040	221,336	119,838	39,484	62,014

Evaporation from impervious areas assumed at 10%

7. Comparison of Pre-Development and Post-Development

	Precipitation (m ³)	Evapotranspiration (m°)	Infiltration (m ³)	Run-Off (m³)
Pre-Development	221,336	141,165	48,103	32,068
Unmitigated Post-Development	221,336	119,838	39,484	62,014

8. Estimated Post-Development Infiltration Deficit

39,484
48,103
8,619

221,336

9. Mitigation Measures

Additional infiltration due to roof downspouts to grade (25% of rooftop runoff)

Run-Off (m[°]) Precipitation (m³) Evapotranspiration (m³) Infiltration (m³) Pre-Development Mitigated Post-Development 221,336 48,103 141,165 32,068

119,838

44,265

4,781

27,287

Evapotranspiration Calculations*

PET (cm/month) = 1.6 (L/12) ($10T_a/I$)^a

- L average day length (Waterloo Airport Weather Station)*
- T_a average daily temperature (Waterloo Airport Weather Station)*
- I Σ $(T_a/5)^{1.5}$

a $(6.75 \times 10^{-7}) I^3 - (7.71 \times 10^{-5}) I^2 + (1.792 \times 10^{-2}) I + 0.49$

	L (hrs)	Ta (°C)	$(T_a/5)^{1.5}$	PET
January	9.2	-6.0		0
February	10.4	-5		0
March	11.9	-1		0
April	13.4	6	1.3	2.8
May	14.7	13	4.2	7.4
June	15.4	19	7.4	11.9
July	15.1	22.0	9.2	13.7
August	13.9	20	8.0	11.4
September	12.5	17	6.3	8.5
October	11.0	10	2.8	4.1
November	9.7	4	0.7	1.3
December	9.0	-2		0

I = 39.95725

a = 1.125999

PET = 611.4 mm/a

*Potential Evapotranspiration follows the Thornthwaite Equation as published in:

Thornthwaite, C. W. (1948). "An Approach Toward a Rational Classification of Climate". Geographical Review 38 (1): 55-94. *Average day length data for Collingwood Area obtained online from timeanddate.com

*Average monthly temperature obtained online from Environment Canada (monthly averages from 1994-2022)

Appendix A Borehole Logs

SAMPI	ING METHODS	PENETRATION RESISTANCE
AS CORE DP FV	auger sample cored sample direct push field vane	Standard Penetration Test (SPT) resistance ('N' values) is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a standard 50 mm (2 in.) diameter split spoon sampler for a distance of 0.3 m (12 in.).
GS SS ST WS	grab sample split spoon shelby tube wash sample	Dynamic Cone Test (DCT) resistance is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a conical steel point of 50 mm (2 in.) diameter and with 60° sides on 'A' size drill rods for a distance of 0.3 m (12 in.)."

COHESIONLE	SS SOILS	COHESIVE S	OILS		COMPOSITIO	N
Compactness	pactness 'N' value Con		usistency 'N' value Undrained Shear Strength (kPa) Term		Term (e.g)	% by weight
very loose loose compact dense very dense	< 4 4 – 10 10 – 30 30 – 50 > 50	very soft soft firm stiff very stiff hard	< 2 2 - 4 4 - 8 8 - 15 15 - 30 > 30	< 12 12 - 25 25 - 50 50 - 100 100 - 200 > 200	<i>trace</i> silt <i>some</i> silt silt <i>y</i> sand <i>and</i> silt	< 10 10 – 20 20 – 35 > 35

TESTS AND SYMBOLS

		<u></u>	
МН	mechanical sieve and hydrometer analysis	Ā	Unstabilized water level
	water content	\mathbf{V}	1 st water level measurement
W, Wc	water content		
w∟, LL	liquid limit	$\bar{\mathbf{\Lambda}}$	2 nd water level measurement
w _P , PL	plastic limit	T	Most recent water level measurement
I _P , PI	plasticity index	_	
k	coefficient of permeability	3.0+	Undrained shear strength from field vane (with sensitivity)
Y	soil unit weight, bulk	Cc	compression index
Gs	specific gravity	Cv	coefficient of consolidation
φ'	internal friction angle	mv	coefficient of compressibility
C'	effective cohesion	е	void ratio
Cu	undrained shear strength	PID	photoionization detector
		FID	flame ionization detector

FIELD MOISTURE DESCRIPTIONS

Damp refers to a soil sample that does not exhibit any observable pore water from field/hand inspection.
 Moist refers to a soil sample that exhibits evidence of existing pore water (e.g. sample feels cool, cohesive soil is at plastic limit) but does not have visible pore water
 Wet refers to a soil sample that has visible pore water

oje	ct N	o. : 1-22-0482-01	Clie	nt	: V	Vdd N	<i>l</i> lain St	eet	Ori	ginated by:AA
ate	start	ed : August 16, 2022	Pro	ject	: 1	1 Ma	in Stre	t	Co	ompiled by :FM
hee	t No.	. :1 of 1	Loc	atio	п·Р	Puslin	ch, Ont	ario	C	hecked by : SZ
		E: 572000, N: 4811253 (UTM 17T)	200					n : Geodetic		
g typ		Track-mounted					Method	: Solid stem augers		
		SOIL PROFILE			SAMPI		, 	Penetration Test Values		Lab Data
D D	Elev epth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows / 0.3m) Moisture / Plasticity 8 ×Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) Field Vane Plastic Natural Liquid O Unconfined + Field Vane PL Mc Li Pocket Penetrometer ■ Lab Vane PL Mc Li 40 80 120 160 10 20	Vapour (ppm) Instrument	GR SA SI
		FILL, sand, some gravel, trace rootlets, dense, brown, moist		1	SS	35	313 -	o		
3	12.2 0.8	SILTY SAND, trace clay, trace gravel, compact, brown, moist		2	SS	24	312 -			
				3	SS	21		0		
				4	SS	17		0		
				5	SS	19	310 -	o		
							309 -			
				6	SS	25	- 308 -	o		
	06.9 6.1 06.4	CLAYEY SILT , trace sand, very stiff, brown, moist		7	ss	27	307 -	o		0 3 72
P	6.6	END OF BOREHOLE Borehole was dry and open upon completic	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	I		1	WATER LEVEL READINGS Date Water Depth (m) Elevation (m)	I	· I

file: 1-22-0482-01 bh logs.gpj

nee	start						∕lain St										- 0	ated by	
sitic	Date started : August 16, 2022 Sheet No. : 1 of 1		Pro	Project : 11 Main Street							Com	piled by	: FM						
			Loc	atic	n : F	Puslina	ch, On	ario									Che	cked by	: sz
	on :	E: 571881, N: 4811204 (UTM 17T)						m : Geode	tic										
ιy	e :	Track-mounted				Drilling	Method	: Solid s	tem au	gers									
		SOIL PROFILE			SAMP		Scale	Penetration T (Blows / 0.3m X Dynamic C				Mo	oisture / F	Plastici	ty	e –	ent) Data and
	Elev	Description	Graphic Log	ber	be	SPT 'N' Value	on Sc		20	3 <u>0</u> 4	4 <u>0</u>	Plastic Limit	Natu Water C	ral Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	er Lew Cou	nment
Ċ	Depth (m)	Description	iraph	Number	Type	N. To	Elevation ((m)	O Unconfine Pocket P	d	+ Fie) eld Vane b Vane	PL	. мс			т Т	lns		IN SIZE BUTION MIT)
ł	318.2	GROUND SURFACE FILL, sand, some gravel, trace rootlets,		-		5	ш	40	80 1	20 1	60	10) 20	30	0				SA SI
		loose, brown, moist		1	SS	8	318 -					0							
				<u> </u>															
3	0.8	SILTY SAND to SILT AND SAND, trace					· ·												
		clay, trace gravel, compact to very dense, brown, moist		2	SS	32	317 -			\backslash		0							
				3	ss	53	1.					0							
					33	55	-												
							316 -				-								
				4	SS	23			1			0							
				_															
				5	SS	50 / 150mm	315 -					0							
							· ·												
							314 -												
				-															
				6	SS	69						0							
							313 -												
		wet below		-	ss	60	312 -						c	、					
				7	55	60								,					
							· ·											1	
							311 -												
				: 			-												
				8	SS	57	· ·	1						С					

Borehole was dry and open upon completion of drilling.

WATER LEVEL READINGS										
Date Date	Water Depth (m)	Elevation (m)								
Aug 24, 2022	7.6	310.6								
Sep 7, 2022	7.7	310.5								
Sep 19, 2022	7.7	310.5								

50 mm dia. monitoring well installed.

file: 1-22-0482-01 bh logs.gpj

het No. <u>1</u> 1 1 Location : Puslinch, Ontario <u>Checked by</u> pallon : E: 571901, N: 4811091 (UTM 177) g pp : Track-mounted <u>Description</u> <u>a <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u></u>	oject N	lo. : 1-22-0482-01	Clie	ent	: V	Vdd N	<i>l</i> lain St	reet								Origin	ated by	: AA
silion : E: 571901, N: 4811091 (UTM 177) Elevation Datum : Geodetic by the : Track-mounted : Sold stem augers Sold PROFILE Sold Stem augers Sold Stem Company (Plasticuly Plasticuly Inter Sold Stem Company (Plasticuly In	te sta	rted : August 16, 2022	Pro	jec	t :1	1 Ma	in Stree	et			Co				Com	Compiled by :FM		
Bype 2 Track-mound SolL PROFILE SAM-LES Buend SOLL PROFILE SAM-LES Buend	eet No	o. :1 of 1	Location : Puslinch, Ontario									Checked by : SZ						
SOLL PROFILE SAMPLES (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)																		
Image: Construction Image: Construction <thimage: construction<="" th=""> Image: Construction</thimage:>	T					-	Departmention Test Values									Lab		
Line Description Image: Participation Image: Participation <thimage: particip<="" td=""><td></td><td></td><td>bo</td><td>-</td><td></td><td></td><td>Scale</td><td>(Blows XDyr</td><td>/ 0.3m) namic Cone</td><td>\geq</td><td></td><td></td><td></td><td></td><td>pace our n)</td><td>ment iils</td><td></td><td>and</td></thimage:>			bo	-			Scale	(Blows XDyr	/ 0.3m) namic Cone	\geq					pace our n)	ment iils		and
37.1 GROUND SURFACE 0	<u>Elev</u> Depth	Description	ohic L	Impe	Type	N. <	ation (m)	Undraii	ned Shear Stre	ngth (kPa	a)		Water Content		leads Vapo (ppr	nstrur Deta	Dater Le	
FILL sand, some gravel, trace rootlets, compact, brown, moist 1 SS 11 317 O 316.3 SILTY SAND to SILT AND SAND, trace the way dense, brown, moist 1 2 SS 28 0	(m) 317.1		Grag	ž		SPT	Elev	P	ocket Penetrome	ter 📕 La	ab Vane	1		-	-	_		RIBUTION (MIT) R SA S
0.8 SILTY SAND to SILT AND SAND, trace day, trace gravel, compact to very dense, brown, moist.		FILL, sand, some gravel, trace rootlets,		1	SS	11	317 -					0						
		clay, trace gravel, compact to very dense,		2	SS	28	316 -					0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-											
				3	SS	16	315 -					0						
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	SS	43	-					0						
							314 -											
				5	SS	56	-					0						
							313 -											
				6	SS	76						0						
							312 -											
wet below 311 0							-											
		wet below		7	SS	53	311 -						0					36 5
							-											

END OF BOREHOLE

Borehole was dry and caved to 7.2 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS										
Date	Water Depth (m)	Elevation (m)								
Aug 24, 2022	6.2	310.9								
Sep 7, 2022	6.3	310.8								
Sep 19, 2022	6.4	310.7								

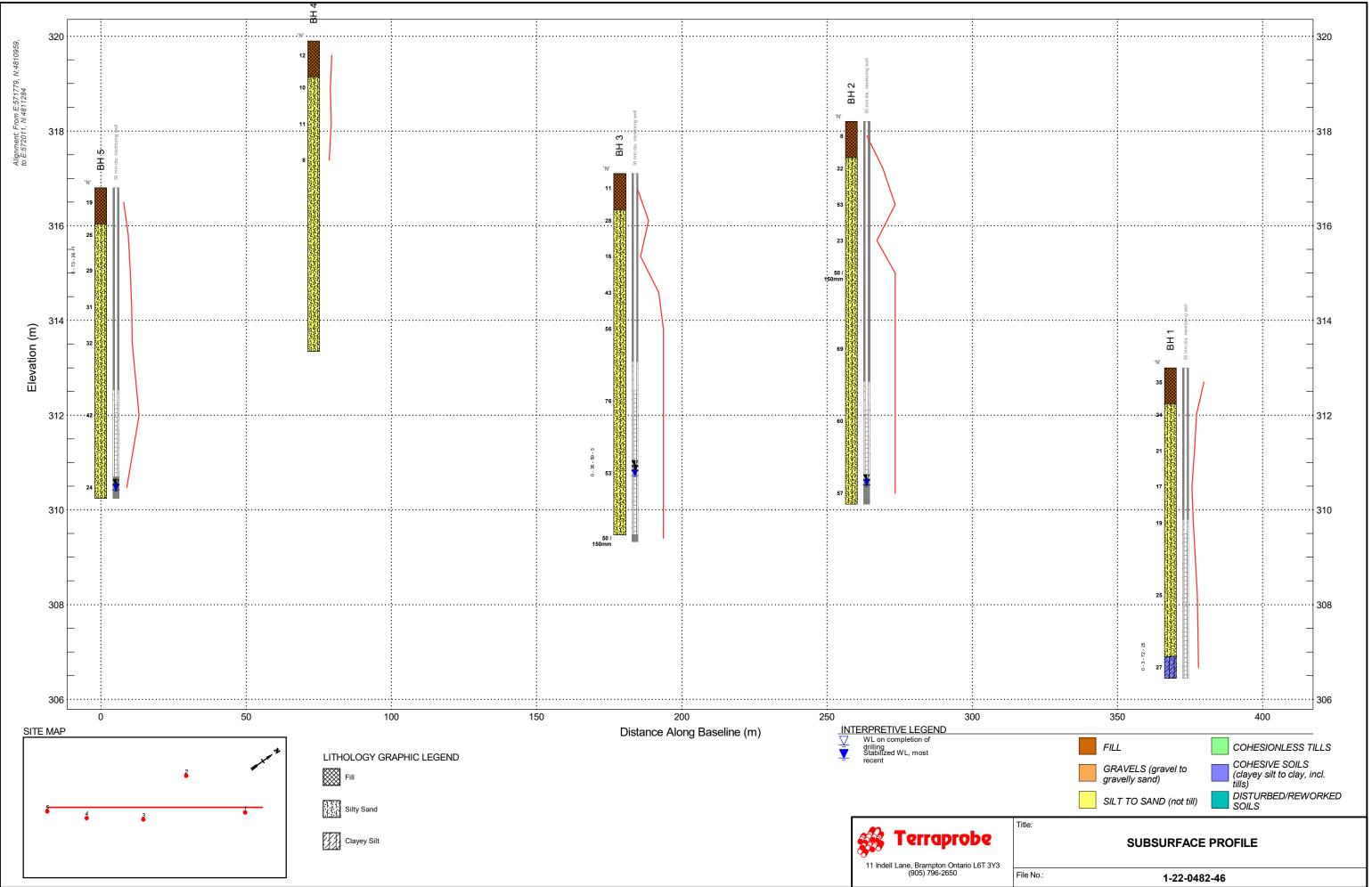
е	ct N	o. : 1-22-0482-01	Clie	nt	: V	Vdd N	/lain St	reet			Client : Wdd Main Street Originated by								
э	star	ted : August 16, 2022	Proj	ect	: : 1	1 Ma	in Stre	et										Com	piled by:FI
e	t No	. :1 of 1	Loc	atio	n : F	uslina	ch, Ont	ario										Che	cked by :S
io	n :	E: 571837, N: 4811007 (UTM 17T)				Elevati	on Datu	n : G	Geodeti	с									
yp	e :	Track-mounted				-	Method	-	olid st				-						1
Ē	<u>Elev</u> epth (m)	SOIL PROFILE Description	Image: Second strength (kPa) Image: Second strength (kPa) Image: Second strength (kPa) Image: Second strength (kPa) Image: Second strength (kPa)						Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Lab Dat and Commen GRAIN SIZ GRAIN SIZ DISTRIBUTION (MIT)							
1	319.9	GROUND SURFACE FILL, sand, some gravel, trace rootlets,		-		SPT	ш	4	8 0	0 12	20 1	60	1	0 2	0 3	0			GR SA S
		compact, brown, moist		1	SS	12	-		1				0						
3	19.1 0.8	SILTY SAND, trace clay, trace gravel,					319 -												
		loose to compact, brown, moist		2	SS	10							0						
				3	SS	11	318 -						o						
				4	SS	8	-						ø						
							317 -												
				5	AS								0						
							316 -												
				•															
				6	AS		315 -						0						
				•			314 -												
				-															
	<u>13.3</u> 6.6			7	AS		.						0						1

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

file: 1-22-0482-01 bh logs.gpj

	Terraprobe											DG OI				
roject N	lo. : 1-22-0482-01	Clie	nt	: V	Vdd N	/lain St	reet							-		by : AA
ate star	ted : August 16, 2022	Proj	ect	: 1	1 Ma	in Stre	et							Com	piled	by : FM
heet No	p. : 1 of 1	Loc	atio	n:P	uslina	ch, Ont	ario							Che	cked	by : SZ
sition	: E: 571785, N: 4810955 (UTM 17T)			E	Elevati	on Datu	n : Geodeti	с								
g type	: Track-mounted	Drilling Method : Solid stem augers										-				
	SOIL PROFILE	SAMPLES Blows / 0.3m) Solution Test Values (Blows / 0.3m) XDynamic Cone						Moistu	ure / Plasticity	e _	ent.		Lab Data and			
Elev Depth (m)		Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	10 2 Undrained Shea O Unconfined ● Pocket Per	<u>,03</u> ar Strenç etrometer	+ Fiel	d Vane Vane	Plastic Limit W PL 10	Natural Liqu l'ater Content Lin	Headspace Vapour (ppm)	Instrument Details	Unstabilized Water Level	GRAIN SIZE DISTRIBUTION ((MIT)
316.8	GROUND SURFACE FILL, sand, some gravel, trace rootlets, compact, brown, moist		1	SS	19					<u> </u>	0					GR SA SI
316.0 0.8	SILTY SAND, trace clay, trace gravel, compact to dense, brown, moist		2	SS	26	316 -					0					
			3	SS	29	315 -					0					0 73 26
			4	SS	31						0					
	gravelly sand		5	SS	32	314 -					0					
						313 -							_			
	wet below		6	SS	42	312 -)	0		_		•	
															•	
			7	SS	24	311 -						0				
<u>310.2</u> 6.6	END OF BOREHOLE				24	J			\\\\\\							

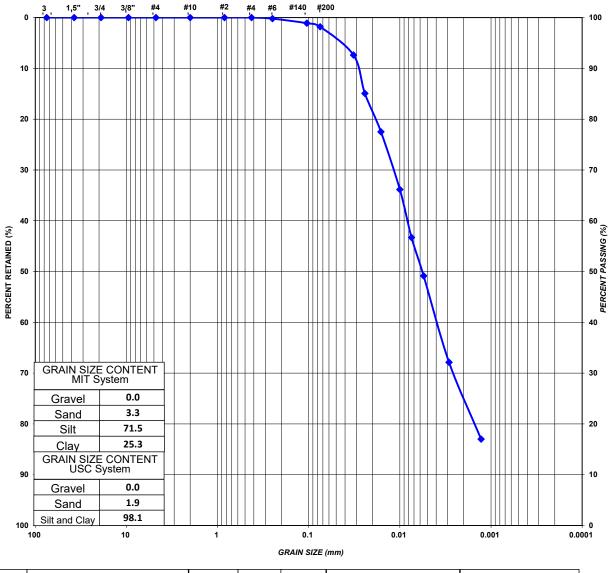

Borehole was dry and caved to 6.1 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed.

Torraprobo

WATER LEVEL READINGS										
Date Date	Water Depth (m)	Elevation (m)								
Aug 24, 2022	6.3	310.5								
Sep 7, 2022	6.4	310.4								
Sep 19, 2022	6.4	310.4								

Report: ISECTION - TABLOID - ELEV

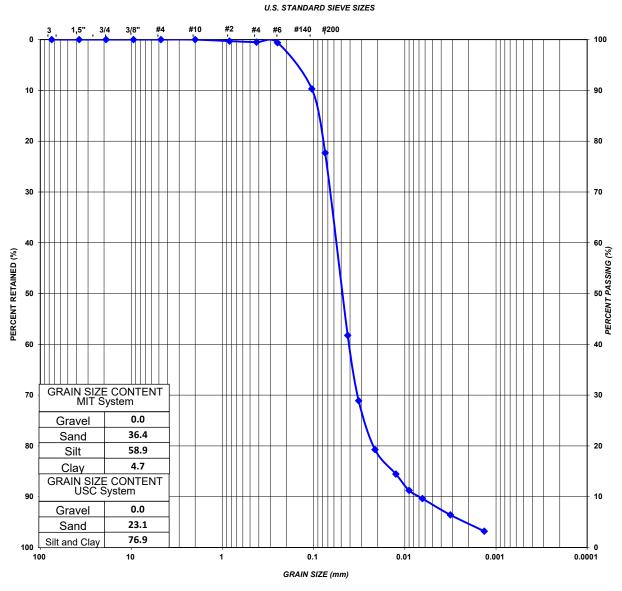

PROJECT: 11 Main Street, Puslinch, Ontario LOCATION: Greater Toronto Area, On. CLIENT: Wdd Main Street CONTACT: Narjes SOIL SAMPLE: 1-7 20' - 21'6" MIT DESCRIPTION: CLAYEY SILT, trace sand USC SYMBOL: CH

FILE NO.: 1-22-0482 LAB NO.: 1259 SAMPLE DATE: 16-Aug-22 SAMPLED BY: A.A.

* To be read in conjunction with cover letter only * Estimated rate of Percolation = 58 min/cm

GRAIN SIZE DISTRIBUTION

MIT SYSTEM		GRAVEL	F	COARSE	SAND	FINE	SILT	CLAY
UNIFIED SYSTEM	COARSE	FINE	COARSE	MEDIUM		FINE	SILT AND	CLAY
STSTEM	SYSTEM GRAVEL			SAND			012171110	


USC SYMBOL: ML

PROJECT: 11 Main Street, Puslinch, Ontario LOCATION: Greater Toronto Area, On. CLIENT: Wdd Main Street CONTACT: Narjes SOIL SAMPLE: 3-7 20' - 21'6" MIT DESCRIPTION: SILT AND SAND, trace clay

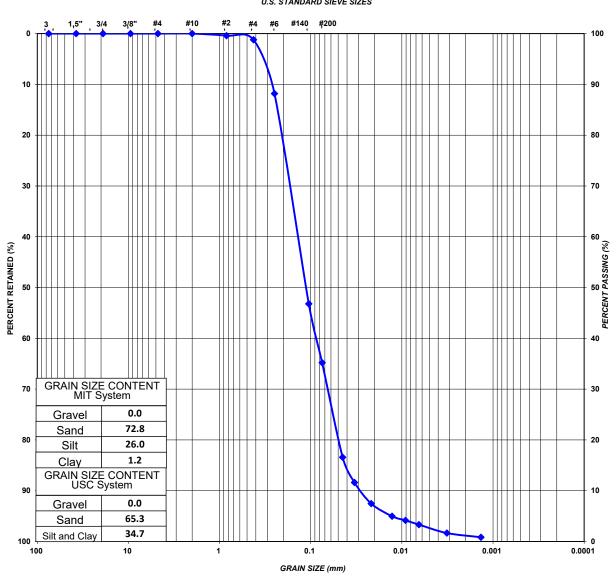
FILE NO.: 1-22-0482 LAB NO.: 1259 SAMPLE DATE: 16-Aug-22 SAMPLED BY: A.A.

* To be read in conjunction with cover letter only * Estimated rate of Percolation = 45 min/cm

GRAIN SIZE DISTRIBUTION

MIT SYSTEM	GRAVEL			COARSE	MEDIUM SAND	FINE	SILT	CLAY
UNIFIED SYSTEM	COARSE	FINE	COARSE	-	ND	FINE	SILT AND	CLAY

TT Rev. May 2003



PROJECT: 11 Main Street, Puslinch, Ontario LOCATION: Greater Toronto Area, On. CLIENT: Wdd Main Street CONTACT: Narjes SOIL SAMPLE: 5-3 5' - 6'6" MIT DESCRIPTION: SILTY SAND, trace clay USC SYMBOL: SM

FILE NO.: **1-22-0482** LAB NO.: **1259** SAMPLE DATE: **16-Aug-22** SAMPLED BY: **A.A.**

* To be read in conjunction with cover letter only * Estimated rate of Percolation = 11 min/cm

GRAIN SIZE DISTRIBUTION

МІТ	65 W (7)			COARSE	MEDIUM	FINE		
SYSTEM		GRAVEL			SAND		SILT	CLAY
UNIFIED	COARSE	FINE	COARSE	MEDIUM		FINE		
SYSTEM	GR/	AVEL		SA	ND		SILT AND	CLAY

U.S. STANDARD SIEVE SIZES

Appendix B Well Record Summary

Page	1	of	7
------	---	----	---

							MECP Well Reco	ords Summary
WELL ID	MECP* WWR ID	Construction Method	Well Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
1	6709780	Rotary (Air)	33.5	5/17/1989	Domestic	13.4	113.4	Clay/Sand (3.0) Sand/Gravel 12.2) Clay/Sand (29.6) Sand/Gravel (32.0) Rock (32.5)
2	6713657	Rotary (Air)	25.0	3/14/2001	Domestic	16.2	75.6	Clay/Stones (17.7) Sand (18.9) Clay/Gravel 24.4) Gravel (25.0)
3	6711904	Rotary (Air)	20.1	6/13/1995	Domestic	6.1	75.6	Clay/Stones (19.5) Gravel (20.1)
4	6702532	Cable Tool	25.9	9/11/1965	Domestic	7.3	37.8	Clay/Gravel (25.3) Rock (25.9)
5	7355755	Other Method	32.9	2/7/2020	Domestic	13.9	113.4	Gravel (12.2) Clay (27.4) Sand/Gravel (32.9)
6	7355755	Other Method		2/7/2020	Domestic	13.9	-	-
7	6710042	Rotary (Air)	26.2	8/3/1989	Domestic	16.8	56.7	Clay/Stones (15.2) Sand/Gravel (25.0) Gravel (26.2)
8	6704402	Cable Tool	32.6	8/17/1972	Domestic	7.6	37.8	Clay/Stones (29.6) Limestone (32.6)
9	6713746	Not Known		4/20/2001	Abandoned-Other	-	-	-
10	6705095	Cable Tool	31.1	2/22/1974	Domestic	13.7	75.6	Clay/Stones (30.2) Limestone (31.1)
11	7266806	Rotary (Air)		6/9/2016	Domestic	9.2	-	-
12	7266806	Rotary (Air)	•	6/9/2016	Domestic	9.2	-	-
13	7266806	Rotary (Air)	30.5	6/9/2016	Domestic	9.2	56.7	Clay/Stones (22.9) Clay/Sand (25.9) Rock (30.5)
14	6710043	Rotary (Air)	31.7	8/3/1989	Domestic	18.9	75.6	Clay/Stones (9.1) Sand 13.7) Clay (29.0) Gravel (31.7)
15	6707386	Rotary (Air)	35.1	5/7/1980	Commerical	12.2	37.8	Sand (3.0) Clay/Gravel (31.4) Limestone (35.1)
16	6711008	Rotary (Air)	32.3	9/4/1992	Domestic	18.0	94.5	Sand/Gravel (6.1) Clay/Gravel (16.8) Sand (31.7) Gravel (32.3)
17	7039012	-	-	11/24/2006	Abandoned-Other	-	-	-
18	6715891	Other Method	5.2	8/10/2006	Observation Wells	-	-	Sand/Silt (5.2)
19	6704817	Cable Tool	24.1	10/18/1973	Domestic	6.7	37.8	Clay/Stones (9.1) Clay/Sand (21.3) Sand/Gravel (24.1)
20	6702538	Cable Tool	17.7	8/6/1958	Domestic	8.2	31.5	Clay/Gravel (15.2) Gravel (17.7)
21	6709646	Cable Tool	29.0	3/13/1989	Commerical	8.5	75.6	Sand/Gravel (9.1) Clay/Sand (20.7) Sand/Gravel (25.9) Limestone (29.0)
22	7122871	Other Method	3.1	4/24/2009	Test Hole	-	-	Clay/Silt (3.1)
23	6714059	Rotary (Air)	31.1	4/19/2002	Domestic	14.9	75.6	Clay/Stones (12.2) Sand (19.8) Clay/Gravel (26.8) Limestone (31.1)
24	6714286	Air Percussion	24.7	11/14/2002	Domestic	10.4	45.4	Clay/Sand (9.1) Sand/Gravel (12.8) Clay/Sand (24.1) Sand/Gravel (24.7)
25	6711101	Rotary (Air)	32.0	1/7/1993	Domestic	14.9	94.5	Sand/Gravel (31.4) Limestone (32.0)
26	7122870	Other Method	4.3	4/24/2009	Test Hole	-	-	Clay/Silt (4.3)
27	6702537	Cable Tool	11.0	5/5/1959	Domestic	3.7	11.3	Clay/Gravel (9.1) Sand/Gravel (10.4) Gravel (11.0)
28	6702541	Cable Tool	42.1	5/26/1956	Domestic	5.8	30.2	Clay/Stones (22.9) Gravel (28.0) Limestone (42.1)
29	7190638	-	-	8/18/2012	Abandoned-Quality	-	-	
30	6703703	Cable Tool	40.2	6/26/1970	Domestic	5.5	37.8	Sand (2.1) Clay/Stones (14.3) Gravel (15.8) Clay/Sand (29.0) Brown Rock (35.0) Black Rock (40.2)
31	6711087	Rotary (Air)	32.6	7/20/1992	Public	18.3	75.6	Clay/Stones (32.0) Limestone (32.6)
32	6710084	Rotary (Air)	43.0	11/1/1989	Domestic	16.8	56.7	Clay/Stones (27.1) Brown Rock (36.6) Dark Brown Rock (43.0)
33	7190634	Rotary (Convent.)	29.3	8/16/2012	Domestic	4.8	113.4	Clay/Silt (4.0) Sand/Gravel (22.9) Limestone (29.3)

			Well					
WELL ID	MECP* WWR ID	Construction Method	Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
34	7190634	Rotary (Convent.)	6.1	8/16/2012	Domestic	4.8	-	-
35	6713656	Rotary (Air)	-	3/22/2001	Domestic	14.3	-	-
36	6713656	Rotary (Air)	37.2	3/22/2001	Domestic	14.3	113.4	Clay/Stones (26.2) Red-Brown Limestone (29.0) Brown Limestone (37.2)
37	6709991	Cable Tool	26.2	9/16/1989	Domestic	9.2	37.8	Sand/Gravel (18.3) Gravel (25.3) Limestone (26.2)
38	6702539	Cable Tool	25.6	8/3/1958	Domestic	7.6	56.7	Clay/Gravel (21.3) Sand/Gravel (22.9) Limestone (25.6)
39	6702661	Cable Tool	31.7	9/15/1951	Domestic	7.6	-	Clay (6.1) Silt/Sand (24.4) Rock (31.7)
40	6712162	Rotary (Air)	29.3	9/30/1996	Domestic	16.2	56.7	Clay/Stones (27.7) Limestone (29.3)
41	6710177	Rotary (Air)	-	12/8/1989	Domestic	16.8	-	-
42	6710177	Rotary (Air)	43.0	12/8/1989	Domestic	16.8	56.7	Clay/Stones (30.8) Brown Rock (38.1) Dark Brown Rock (43.0)
43	6711440	Rotary (Air)	-	6/7/1994	Domestic	14.6	-	-
44	6711440	Rotary (Air)	31.4	6/7/1994	Domestic	14.6	94.5	Clay/Gravel (27.7) Limestone (31.4)
45	6709858	Rotary (Air)	18.9	6/23/1989	Domestic	5.8	56.7	Clay/Stones (9.1) Sand/Gravel (18.9)
46	6713367	Rotary (Air)	-	6/8/2000	Domestic	15.3		
47	6713367	Rotary (Air)	43.6	6/8/2000	Domestic	15.3	94.5	Sand (6.7) Clay (29.9) Gravel (30.8) Limestone (43.6)
48	6702667	Cable Tool	24.7	8/25/1951	Domestic	0.0	-	Clay (6.1) Silt/Sand (24.4) Gravel (24.7)
49	6702662	Cable Tool	32.0	7/19/1961	Domestic	16.8	26.5	Clay/Gravel (30.5) Gravel (32.0)
50	6708055	Cable Tool	15.2	10/11/1983	Domestic	6.4	37.8	Clay/Stones (14.6) Sand (14.9) Gravel (15.2)
51	6703313	Cable Tool	-	10/7/1968	Domestic	4.0	-	-
52	6703313	Cable Tool	30.8	10/7/1968	Domestic	4.0	75.6	Clay (18.3) Sand/Gravel (21.3) Clay/Gravel (25.6) Rock (30.8)
53	6706778	Rotary (Air)	-	8/8/1978	Domestic	6.4	-	-
54	6706778	Rotary (Air)	31.4	8/8/1978	Domestic	6.4	75.6	Clay/Gravel (22.6) Sand (25.3) Limestone (31.4)
55	6704136	Cable Tool	28.0	11/17/1971	Domestic	12.2	37.8	Clay/Stones (26.8) Limestone (28.0)
56	6703850	Cable Tool	32.0	7/9/1970	Domestic	14.3	26.5	Sand (6.1) Clay/Sand (24.4) Samd (25.9) Clay/Gravel (27.7) Limestone (32.0)
57	7320421	Rotary (Air)	-	8/8/2018	Domestic	14.6	-	-
58	7320421	Rotary (Air)	-	8/8/2018	Domestic	14.6	-	-
59	7320421	Rotary (Air)	28.4	8/8/2018	Domestic	14.6	56.7	Clay/Stones (28.0) Rock (28.4)
60	6702540	Cable Tool	42.7	9/4/1953	Domestic	7.0	25.5	Clay/Gravel (16.5) Sand (18.9) Gravel (23.2) Clay (27.1) Gravel (27.7) Brown Rock (40.8) Black Rock (42.7)
61	6702665	Cable Tool	32.0	12/28/1966	Domestic	10.7	75.6	Clay/Gravel (28.3) Rock (32.0)
62	6702674	Cable Tool	26.5	3/9/1964	Domestic	16.8	30.2	Clay/Sand (18.3) Sand/Gravel (25.9) Gravel (26.5)
63	6711149	Rotary (Air)	-	3/11/1993	Domestic	15.9	-	
64	6711149	Rotary (Air)	32.0	3/11/1993	Domestic	15.9	75.6	Clay/Sand/Stones (26.2) Rock (32.0)
65	6711006	Rotary (Air)	32.3	8/31/1992	Domestic	14.6	94.5	Clay/Sand/Gravel (28.7) Limestone (32.3)
66	6708057	Cable Tool	30.5	10/19/1983	Domestic	12.2	94.5	Sand/Gravel (5.5) Clay (21.9) Sand/Gravel (27.4) Limestone (30.5)
67	6702671	Cable Tool	34.7	8/11/1959	Domestic	11.3	11.3	Clay/Gravel (32.9) Limestone (34.7)

Page	3	of	7
------	---	----	---

WELL ID	MECP* WWR ID	Construction Method	Well Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
68	6702672	Cable Tool	26.8	9/1/1960	Domestic	7.6	56.7	Clay/Stones (2.8) Limestone (26.8)
69	7297218	-	-	10/4/2017	Alteration	-	-	-
70	7271832	-	10.7	6/15/2016	Abandoned-Other	-	-	-
71	7155300	Other Method	10.7	11/3/2010	Monitoring	-	-	Sand/Silt (10.7)
72	7311547	-	-	4/10/2018	Alteration	-	-	-
73	6702666	Cable Tool	27.4	8/19/1951	Domestic	7.6	-	Clay (6.1) Sand/Silt (24.4) Gravel (27.4)
74	6712401	Rotary (Air)	-	10/29/1997	Domestic	13.7	-	-
75	6712401	Rotary (Air)	36.6	10/29/1997	Domestic	13.7	94.5	Clay/Stones (19.8) Sand/Gravel (29.0) Clay/Gravel (32.0) Limestone (36.6)
76	7342709	-	-	9/10/2019	Alteration	-	-	-
77	7133961	-	3.0	9/10/2009	Monitoring	-	-	Gravel (1.5) Silt/Stones (3.0)
78	6709100	Rotary (Air)	32.0	11/26/1987	Domestic	15.6	56.7	Gravel (9.1) Clay/Gravel (27.4) Rock (32.0)
79	7323682	Other Method	31.1	10/29/2018	Domestic	19.5	75.6	Clay/Gravel (21.3) Sand/Gravel (28.3) Limestone (31.1)
80	7323682	Other Method	-	10/29/2018	Domestic	-	-	-
81	7323682	Other Method	-	10/29/2018	Domestic	-	-	-
82	7155301	Other Method	10.7	11/3/2010	Monitoring	-	-	Fill (2.4) Sand/Gravel (10.7)
83	6711667	Air Percussion	28.3	12/8/1994	Domestic	15.9	37.8	Sand/Gravel (4.6) Clay/Sand (24.9) Sand/Gravel 27.7) Limestone (28.3)
84	6702668	Cable Tool	18.3	9/25/1951	Domestic	9.2	18.9	Clay/Gravel (8.5) Sand/Gravel (12.2) Clay/Stones (15.2) Sand (17.1) Gravel (18.3)
85	6702673	Cable Tool	32.0	9/8/1962	Domestic	18.3	15.1	Clay/Stones (29.0) Limestone (32.0)
86	6711129	Rotary (Air)	32.0	2/25/1993	Domestic	4.6	94.5	Sand/Gravel (20.1) Clay (26.8) Sand/Gravel (28.6) Limestone (32.0)
87	7119802	Rotary (Air)	-	1/3/2009	Domestic	-	-	-
88	7119802	Rotary (Air)	-	1/3/2009	Domestic	-	-	-
89	7119802	Rotary (Air)	-	1/3/2009	Domestic	-	-	-
90	7119802	Rotary (Air)	-	1/3/2009	Domestic	-	-	-
91	7119802	Rotary (Air)	-	1/3/2009	Domestic	-	-	-
92	7119802	Rotary (Air)	50.3	1/3/2009	Domestic	20.6	75.6	Clay/Stones (33.5) Sand (34.7) Light Brown Limestone (43.3) Dark Brown Limestone (50.3)
93	7314681	-	3.0	7/4/2018	Monitoring	-	-	Sand/Gravel (1.5) Silt/Stones (3.0)
94	7133961	-	3.0	9/10/2009	Monitoring	-	-	Sand/Gravel (1.5) Silt/Stones (3.0)
95		Cable Tool	-	8/27/1987	Domestic	16.8	-	-
96	6710612	Cable Tool	23.5	5/2/1991	Domestic	0.6	181.4	Clay/Gravel (13.7) Sand/Gravel (21.9) Limestone (23.5)
97	6706256	Cable Tool	36.6	12/24/1976	Domestic	17.7	37.8	Clay/Gravel (32.2) Limestone (36.6)
98	6707588	Cable Tool	32.9	2/26/1981	Domestic	16.5	37.8	Prevoiusly Dug (8.2) Clay (32.3) Limestone (32.9)
99	6702536	Cable Tool	12.5	6/16/1961	Domestic	3.1	18.9	Clay/Gravel (10.7) Gravel (12.5)
100	6711879	Rotary (Air)	30.8	11/9/1995	Domestic	13.4	94.5	Clay/Stones (24.1) Limestone (30.8)
101	6705423	Cable Tool	20.4	1/20/1975	Domestic	6.7	37.8	Clay/Sand (6.7) Sand/Gravel (20.1) Gravel (20.4)

Page 4 of 7	7
-------------	---

WELL ID	MECP*	Construction	Well Depth			Static Water	Pumping Rate	Stratigraphy (Depth in m)
	WWR ID	Method	(m)**	Date Completed	Well Use	Level (m)**	(L/min)	
102	7362434	Rotary (Air)	-	6/24/2020	Domestic	4.9	-	
103	7362434	Rotary (Air)	32.9	6/24/2020	Domestic	4.9	45.4	Clay/Gravel (31.1) Rock (32.9)
104	6715529	Rotary (Convent.)	-	5/9/2005	Domestic	18.8		-
105	6715529	Rotary (Convent.)	33.0	5/9/2005	Domestic	18.8	45.0	Sand (9.1) Silt/Clay (27.4) Clay/Stones (32.3) Sand/Gravel (33.2)
106	7299228	Other Method	-	10/23/2017	Domestic	-	-	-
107	7299228	Other Method	-	10/23/2017	Domestic	-	-	-
108	7299228	Other Method	31.4	10/23/2017	Domestic	18.3	113.4	Clay/Gravel (27.4) Sand/Gravel (28.6) Limestone (31.4)
109	6702670	Cable Tool	36.0	5/1/1958	Domestic	10.7	22.1	Clay/Stones (18.3) Sand/Gravel 35.1) Limestone (36.0)
110	6709771	Cable Tool	-	6/8/1989	Domestic	-	-	-
111	6709771	Cable Tool	27.4	6/8/1989	Domestic	7.3	37.8	Sand/Gravel (4.3) Clay/Sand (16.5) Sand/Gravel (24.1) Limestone (27.4)
112	6702669	Cable Tool	36.6	12/6/1951	Domestic	7.0	37.8	Clay (18.3) Gravel (24.4) Rock (36.6)
113	6710040	Rotary (Air)	27.4	11/11/1989	Domestic	16.5	75.6	Clay/Gravel (26.8) Limestone (27.4)
114	7166392	-	35.7	7/12/2011	Alteration	16.8	-	-
115	6713223	Rotary (Air)	-	12/21/1999	Domestic	-	-	-
116	6713223	Rotary (Air)	43.3	12/21/1999	Domestic	21.4	56.7	Clay/Gravel (9.1) Sand/Gravel (16.8) Clay/Gravel (28.3) Light Brown Limestone (33.5) Dark Brown Limestone (43.3)
117	7154838	Other Method	7.6	11/3/2010	Observation Wells	-	-	Silt/Sand 7.6)
118	7353621	Other Method	-	1/27/2020	Domestic	-	-	-
119	7353621	Other Method	-	1/27/2020	Domestic	-	-	-
120	7353621	Other Method	34.1	1/27/2020	Domestic	18.9	86.9	Clay/Stones (9.1) Sand/Gravel (12.1) Clay (22.9) Gravel (28.0) Limestone (34.1)
121	7114627	Other Method	24.3	10/22/2008	Domestic	10.4	45.4	Clay/Stones (21.3) Rock (24.3)
122	7133961	-	3.0	9/10/2009	Monitoring	-	-	Sand/Gravel (1.5) Silt/Stones (3.0)
123	6713365	Rotary (Air)	-	6/9/2000	Domestic	-	-	-
124	6713365	Rotary (Air)	-	6/9/2000	Domestic	-	-	-
125	6713365	Rotary (Air)	37.2	6/9/2000	Domestic	16.8	94.5	Clay/Stones (29.3) Limestone (37.2)
126	7114629	Other Method	27.1	10/21/2008	Domestic	11.6	56.7	Clay/Stones (24.4) Rock (27.1)
127	7314679	-	3.0	7/4/2018	Monitoring	-	-	-
128	7133961	-	-	9/10/2009	Monitoring	-	-	-
129	7133961	Auger	3.0	9/10/2009	Monitoring	-	-	Sand/Gravel (1.5) Silt/Stones (3.0)
130	6711985	Rotary (Air)	30.5	6/15/1996	Domestic	18.3	75.6	Clay/Gravel (29.6) Limestone (30.5)
131	6713863	Rotary (Air)	31.1	9/26/2001	Domestic	18.0	94.5	Clay Stones (27.7) Limestone (31.1)
132	6714294	-	-	10/21/2002	Alteration	-	-	-
133	6707595	Rotary (Air)	31.7	10/6/1981	Domestic	16.8	75.6	Clay/Gravel 7.6) Gravel (12.2) Clay (30.8) Gravel (31.7)
134	6710473	Air Percussion	36.6	11/13/1990	Domestic	19.2	37.8	Sand/Gravel 18.9) Clay (25.3) Sand/Gravel (33.8) Limestone (36.6)
135	6710111	Rotary (Air)	-	11/16/1989	Domestic	-	-	-

Page	5 of	7
------	------	---

			Well					
WELL ID	MECP* WWR ID	Construction Method	Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
136	6710111	Rotary (Air)	43.3	11/16/1989	Domestic	14.9	56.7	Clay/Gravel (25.6) Ligh Brown Rock (33.5) Dark Brown Rock (43.3)
137	6712163	Rotary (Air)	25.9	10/2/1996	Domestic	12.5	56.7	Silt/Stones 6.1) Clay/Gravel (24.4) Limestone (25.9)
138	6703544	Rotary (Convent.)	38.1	7/30/1969	Domestic	16.5	37.8	Sand/Gravel (14.6) Clay/Stones (30.8) Limestone (38.1)
139	6715615	-	-	12/15/2005	Abandoned-Other	-	-	-
140	6713456	Rotary (Air)	21.3	8/14/2000	Domestic	14.0	75.6	Clay/Stones (18.3) Gravel (21.3)
141	6708111	Rotary (Air)	23.8	6/18/1984	Domestic	0.6	75.6	Clay/Sand (21.3) Limestone (23.8)
142	6710485	Rotary (Air)	43.0	10/3/1990	Domestic	16.5	37.8	Clay/Gravel (22.9) Sand (25.9) Cly/Gravel (27.1) Light Brown Rock (35.1) Dark Brown Rock (43.0)
143	6710046	Rotary (Air)	28.6	9/18/1989	Domestic	4.6	75.6	Clay/Gravel (18.3) Silt/Gravel (28.3) Limestone (28.6)
144	7114630	Other Method	-	10/20/2008	Domestic	1.8		
145	7114630	Other Method	23.8	10/20/2008	Domestic	1.8	56.7	Clay/Stones (3.0) Sand/Gravel (9.1) Clay/Gravel (23.2) Rock (23.8)
146	6712564	Rotary (Air)	-	1/1/1998	Domestic	-	-	-
147	6712564	Rotary (Air)	43.0	1/1/1998	Domestic	17.4	56.7	Clay/Gravel (25.9) Sand/Gravel (29.9) Light Brown Limestone (36.6) Dark Brown Limestone (43.0)
148	6707594	Rotary (Air)	29.9	9/23/1981	Domestic	6.7	283.5	Clay/Sand (27.7) Limestone (29.9)
149	7133961	-	3.0	9/10/2009	Monitoring	-	-	Sand/Gravel (1.5) Silt/Stones (3.0)
150	7314680	-	4.5	7/4/2018	Abandoned-Other	-	-	-
151	7204352	Rotary (Convent.)	-	6/15/2013	Domestic	-	-	-
152	7204352	Rotary (Convent.)	-	6/15/2013	Domestic	-	-	-
153	7204352	Rotary (Convent.)	-	6/15/2013	Domestic	-	-	-
154	7204352	Rotary (Convent.)	32.6	6/15/2013	Domestic	7.6	56.7	Clay/Stones 24.1) Limestone (32.6)
155	6712259	Rotary (Air)	-	6/10/1997	Domestic	-	-	-
156	6712259	Rotary (Air)	36.6	6/10/1997	Domestic	14.6	113.4	Sand (1.5) Clay/Sand (26.5) Limestone (36.6)
157	6713196	Rotary (Air)	-	11/25/1999	Domestic	-	-	-
158	6713196	Rotary (Air)	37.5	11/25/1999	Domestic	18.3	75.6	Clay/Gravel 16.8) Sand/Gravel 28.3) Light Brown Limestone (35.1) Dark Brown Limestone (37.5)
159	6711486	Rotary (Air)	-	8/2/1994	Domestic	16.2	-	-
160	6711486	Rotary (Air)	-	8/2/1994	Domestic	16.2	-	<u>-</u>
161	6711486	Rotary (Air)	42.1	8/2/1994	Domestic	16.2	56.7	Clay/Gravel 28.3) Sand/Gravel (29.6) Limestone (42.1)
162	6710494	Rotary (Air)	22.3	7/20/1990	Domestic	12.8	75.6	Clay/Stones (18.3) Gravel (22.3)
163	6712255	Rotary (Air)	29.0	5/27/1997	Domestic	16.5	94.5	Clay/Sand (24.4) Sand/Gravel (27.1) Limestone (29.0)
164	7274863	Other Method	-	11/7/2016	Abandoned-Other	-	-	-
165	7138233	Other Method	-	12/10/2009	Domestic	-	-	
166	7138233	Other Method	36.0	12/10/2009	Domestic	16.5	75.6	Clay/Stones (3.7) Sand/Gravel (12.2) Clay (24.4) Sand/Gravel (29.6) Rock (36.0)
167	6710415	Rotary (Air)	29.9	5/28/1990	Domestic	18.0	56.7	Clay/Gravel (28.6) Limestone (29.9)
168	6709785	Rotary (Air)	-	6/12/1989	Domestic	-	-	
169	6709785	Rotary (Air)	43.0	6/12/1989	Domestic	15.9	56.7	Clay/Stones (18.3) Gravel (29.6) Light Brown Rock (35.1) Dark Brown Rock (43.0)

			Well					
WELL ID	MECP* WWR ID	Construction Method	Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
170	6714759	Rotary (Air)	-	11/17/2003	Domestic	-	-	
171	6714759	Rotary (Air)	30.5	11/17/2003	Domestic	17.0	61.0	Clay/Stones (6.1) Sand/Gravel (15.0) Clay/Gravel (27.0) Rock (30.5)
172	6712723	Rotary (Air)	30.8	9/28/1998	Domestic	18.9	56.7	Clay/Stones 13.7) Sand/Gravel (22.9) Clay/Gravel (28.7) Gravel (30.8)
173	6702546	Cable Tool	30.5	9/9/1966	Livestock	10.7	75.6	Previously Dug (13.7) Clay/Sand 19.3) Rock (30.5)
174	6712370	Rotary (Air)	-	10/28/1997	Domestic	12.2	-	-
175	6712370	Rotary (Air)	-	10/28/1997	Domestic	12.2	-	<u>-</u>
176	6712370	Rotary (Air)	42.7	10/28/1997	Domestic	12.2	75.6	Clay/Gravel (29.3) Light Brown Limestone (35.1) Dark Brown Limestone (42.7)
177	7112768	Rotary (Air)	-	9/24/2008	Commerical	-	-	-
178	7112768	Rotary (Air)	30.5	9/24/2008	Commerical	12.5	37.8	Clay/Stones (4.6) Sand/Gravel (11.6) Clay (22.9) Sand/Gravel (25.9) Rock (30.5)
179	6713015	Rotary (Air)	-	6/29/1999	Domestic	-	-	<u>-</u>
180	6713015	Rotary (Air)	43.6	6/29/1999	Domestic	19.2	75.6	Clay/Gravel (22.9) Sand/Gravel (30.2) Light Brown Limestone (35.1) Dark Brown Limestone (43.6)
181	7319287	-	22.6	9/18/2018	Alteration	10.1	30.2	<u>-</u>
182	7285591	Air Percussion	-	12/20/2016	Domestic	-	-	-
183	7285591	Air Percussion	26.2	12/20/2016	Domestic	4.9	94.5	Clay/Sand (25.3) Limestone (26.2)
184	6708415	Cable Tool	39.6	4/30/1986	Domestic	16.2	37.8	Clay/Stones (29.3) Ligh Brown Rock (37.5) Dark Brown Rock (39.6)
185	6707089	Cable Tool	27.1	9/24/1979	Commerical	10.7	37.8	Clay/Sand (22.3) Rock (27.1)
186	6714637	Rotary (Air)	-	9/30/2003	Domestic	6.4		
187	6714637	Rotary (Air)	25.0	9/30/2003	Domestic	6.4	94.5	Clay/Stones (16.5) Limestone (25.0)
188	6702545	Cable Tool	27.4	6/23/1964	Domestic	9.2	18.9	Sand/Gravel (9.1) Gravel (18.2) Clay/Sand (26.8) Rock (27.4)
189	6702663	Cable Tool	27.4	11/10/1964	Domestic	12.2	37.8	Clay/Stones (24.4) Rock (27.4)
190	6709927	Rotary (Air)	32.3	9/1/1989	Domestic	21.4	56.7	Fill (1.5) Clay/Gravel (30.2) Rock (32.3)
191	6714293	Rotary (Air)	29.0	11/12/2002	Domestic	19.5	68.0	Clay/Stones (26.8) Gravel (29.0)
192	6712487	Rotary (Air)	32.0	2/3/1998	Domestic	13.7	56.7	Clay/Stones (29.0) Gravel (32.0)
193	7254633	Rotary (Convent.)	-	9/18/2015	Domestic	-	-	-
194	7254633	Rotary (Convent.)	-	9/18/2015	Domestic	-	-	-
195	7254633	Rotary (Convent.)	31.4	9/18/2015	Domestic	6.7	151.2	Fill (2.7) Clay/Stones (28.7) Limestone (31.4)
196	6710440	Air Percussion	33.5	9/11/1990	Domestic	20.1	56.7	Clay/Gravel (11.3) Sand/Gravel 31.7) Limestone (33.5)
197	6710353	Air Percussion	34.1	5/8/1990	Domestic	6.7	113.4	Sand/Gravel (7.3) Clay/Gravel (24.1) Sand/Gravel 32.6) Limestone (34.1)
198	6712610	Rotary (Air)	-	7/29/1998	Domestic	20.1		
199	6712610	Rotary (Air)	-	7/29/1998	Domestic	20.1		
200	6712610	Rotary (Air)	43.0	7/29/1998	Domestic	20.1	94.5	Clay/Stones (27.4) Sand/Gravel 30.5) Clay/Gravel (33.2) Light Brown Limestone (36.6) Dark Brown Limestone (43.0)
201	7332571	-	-	3/25/2019	Alteration	-	-	
202	6705869	Rotary (Convent.)	19.8	7/24/1975	Livestock	5.2	75.6	Clay/Stones (17.4) Limestone (19.8)
203	6707677	Cable Tool	46.6	6/29/1982	Domestic	9.2	37.8	Clay/Gravel (27.1) Rock (46.6)

			Well					
WELL ID	MECP* WWR ID	Construction Method	Depth (m)**	Date Completed	Well Use	Static Water Level (m)**	Pumping Rate (L/min)	Stratigraphy (Depth in m)
204	6710281	Rotary (Air)	36.9	4/24/1990	Domestic	13.4	56.7	Clay/Stones (12.2) Sand/Gravel (27.4) Clay/Sand (29.9) Light Brown Rock (35.1) Dark Brown Rock (36.9)
205	6711984	Rotary (Reverse)	31.5	6/18/1996	Domestic	13.4	56.7	Clay/Sand (19.8) Clay/Gravel (31.4) Gravel (31.5)
206	6710282	Rotary (Air)	36.3	4/23/1990	Domestic	12.2	75.6	Clay/Stones (13.7) Sand/Gravel (30.8) Light Brown Rock (33.5) Dark Brown Rock (36.3)
207	6712612	Rotary (Air)	-	7/24/1998	Domestic	-	-	-
208	6712612	Rotary (Air)	-	7/24/1998	Domestic	-	-	-
209	6712612	Rotary (Air)	73.5	7/24/1998	Domestic	25.9	75.6	Clay/Stones (21.3) Sand/Gravel (25.9) Clay/Gravel (32.3) Light Brown Limestone (33.5) Dark Brown Limestone (73.5)
210	6713827	Air Percussion	-	9/6/2001	Domestic	-	-	<u>-</u>
211	6713827	Air Percussion	31.1	9/6/2001	Domestic	14.9	94.5	Clay/Sand (17.7) Sand/Gravel (28.0) Limestone (31.1)
212	6711290	Rotary (Air)	31.4	9/7/1993	Domestic	12.8	75.6	Clay/Stones (10.7) Sand/Gravel (30.5) Gravel (31.4)
213	7199020	Rotary (Convent.)	-	3/6/2013	Domestic	-	-	<u>-</u>
214	7199020	Rotary (Convent.)	43.0	3/6/2013	Domestic	15.9	45.4	Clay/Stones (7.0) Sand/Stones (20.4) Clay/Stones (42.7) Limestone (43.0)
215	6711803	Rotary (Air)	48.8	8/17/1995	Domestic	18.3	56.7	Clay/Stones (15.2) Sand/Gravel (29.0) Light Brown Rock (38.1) Dark Brown Rock (48.8)
216	6704652	Cable Tool	24.4	6/27/1973	Domestic	7.0	37.8	Clay/Stones (23.5) Gravel (24.4)
217	6710441	Air Percussion	-	9/10/1990	Domestic	-	-	<u>-</u>
218	6710441	Air Percussion	37.8	9/10/1990	Domestic	21.0	56.7	Clay/Gravel (25.0) Sand/Gravel (34.7) Limestone (37.8)
219	6702675	Cable Tool	22.9	6/4/1965	Domestic	9.2	30.2	Clay (10.7) Silty Sand (20.1) Rock (22.9)
220	6712182	Rotary (Convent.)	-	1/7/1997	Domestic	-	-	-
221	6712182	Rotary (Convent.)	51.8	1/7/1997	Domestic	12.8	37.8	Sand/Gravel (4.9) Clay/Gravel (26.8) Brown Limestone (46.9) Grey Limestone (51.8)
222	6703857	Cable Tool	24.4	7/22/1970	Domestic	8.5	37.8	Clay/Stones (18.3) Silt/Sand (21.3) Clay/Gravel (24.1) Gravel (24.4)
223	6714525	Rotary (Air)	-	4/7/2003	Domestic	-	-	<u>-</u>
224	6714525	Rotary (Air)	27.7	4/7/2003	Domestic	11.9	56.7	Clay/Stones (22.3) Limestone (27.7)
225	6713406	Rotary (Air)	25.6	7/18/2000	Domestic	10.4	37.8	Clay/Stones (22.9) Sand/Gravel (25.6)
226	6712999	Rotary (Air)	30.5	6/15/1999	Domestic	9.2	56.7	Clay/Stones (26.8) Rock (30.5)
227	6709990	Cable Tool	27.7	10/19/1989	Domestic	3.1	37.8	Sand/Gravel (7.3) Gravel (13.1) Clay/Gravel (21.3) Gravel (26.5) Limestone (27.7)
228	6713220	Rotary (Air)	24.4	12/2/1999	Domestic	11.3	75.6	Clay/Stones (11.6) Sand/Gravel (18.9) Rock (24.4)

*MECP WWID: Ministry of the Environment, Conservation and Parks Water Well Records Identification

**metres below ground surface

Appendix C Results of Groundwater Monitoring

11 Main Street, Puslinch

Groundwater Depths (m below ground surface)

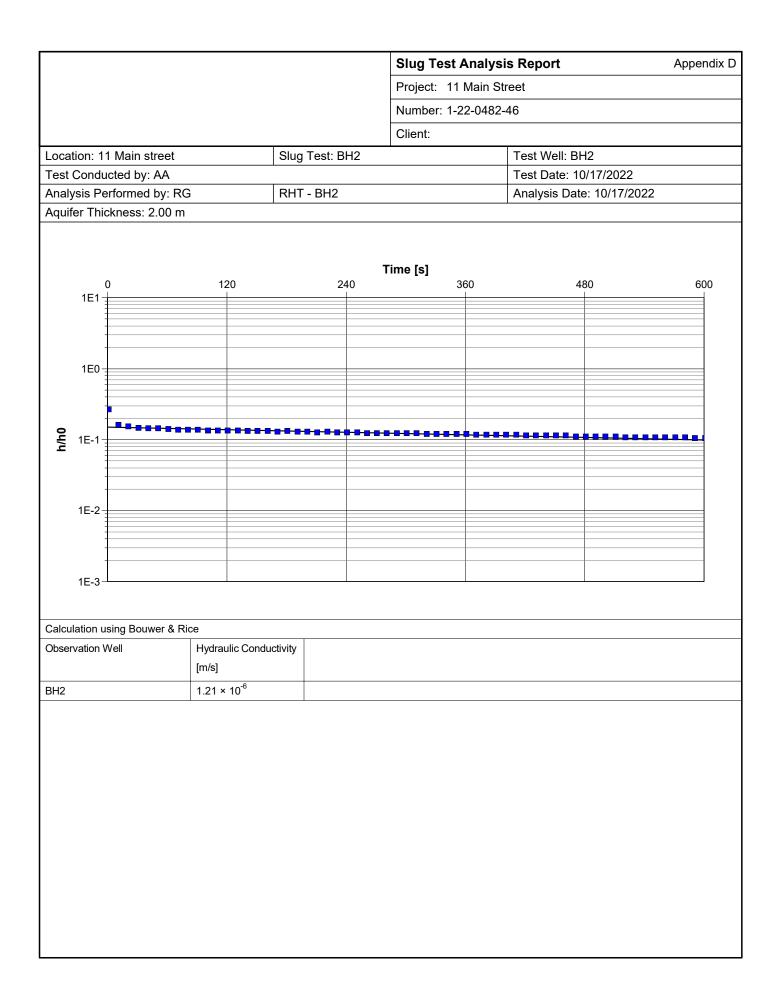
				1st GW Monitoring	2nd GW Monitoring	3rd GW Monitoring	4th GW Monitoring	5th GW Monitoring
	Ground	Well Depth	Well Screen Top Depth	Event*	Event	Event	Event	Event
Monitoring Well ID		(m bgs)		Water Depth				
	(m asl)	(5/	(m bgs)	Aug 24, 2022	Sept 7, 2022	Sept 19, 2022	July 18, 2024	August 6, 2024
				(m bgs)				
BH1	313.0	6.6	3.6	Dry	Dry	Dry	3.93	3.98
BH2	318.2	7.6	6.1	6.64	6.72	6.76	5.61	5.64
BH3	317.1	7.6	4.6	5.22	5.33	5.42	4.29	4.35
BH5	316.8	6.1	4.6	5.13	5.21	5.21	4.40	4.44

Groundwater Elevations (m above sea level)

			Well Screen Top Elevation (m asl)	1st GW Monitoring	2nd GW Monitoring	3rd GW Monitoring	4th GW Monitoring	5th GW Monitoring
	Ground	Well Screen Bottom		Event*	Event	Event	Event	Event
Monitoring Well ID	-	Elevation		Groundwater Level				
interning to en ib	(m asl)	(m asl)		Elevation	Elevation	Elevation	Elevation	Elevation
	(doi)	(ao.)	(aoi)	Aug 24, 2022	Sept 7, 2022	Sept 19, 2022	July 18, 2024	August 6, 2024
				(m asl)				
BH1	313.0	306.4	309.4	Dry	Dry	Dry	309.04	308.99
BH2	318.2	310.6	312.1	311.54	311.46	311.42	312.57	312.54
BH3	317.1	309.5	312.5	311.93	311.82	311.73	312.86	312.80
BH5	316.8	310.7	312.2	311.67	311.59	311.59	312.40	312.36

mbgs - meters below ground surface

masl - meters above sea level


*Indicates that the groundwater has not been stabilized yet

Appendix D Results of Hydraulic Conductivity Testing

Appendix E Laboratory Certificates of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP. 20, CARLSON COURT ETOBICOKE, ON M9W 7K6 416 301-5909 ATTENTION TO: Paul Raepple PROJECT: T1220482.003 AGAT WORK ORDER: 24T182195 WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead DATE REPORTED: Aug 12, 2024 PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes			

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

TOC										
DATE RECEIVED: 2024-08-06 DATE REPORTED: 2024-08-12										
SAMPLE DESCRIPTION:		BH1	BH2	BH3	BH5	BC Surface				
	SAM	PLE TYPE:	Water	Water	Water	Water	Water			
DATE SAMPLED:		2024-08-06	2024-08-06	2024-08-06	2024-08-06	2024-08-06				
Unit	G/S	RDL	6055636	6055693	6055694	6055695	6055696			
mg/L		0.5	1.0	0.7	1.0	0.8	8.8			
	Unit	SAMI DATES Unit G/S	SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL	SAMPLE TYPE: Water DATE SAMPLED: 2024-08-06 Unit G / S RDL 6055636	SAMPLE DESCRIPTION: BH1 BH2 SAMPLE TYPE: Water Water DATE SAMPLED: 2024-08-06 2024-08-06 Unit G / S RDL 6055636 6055693	SAMPLE DESCRIPTION: BH1 BH2 BH3 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2024-08-06 2024-08-06 2024-08-06 Unit G / S RDL 6055636 6055693 6055694	SAMPLE DESCRIPTION: BH1 BH2 BH3 BH5 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2024-08-06 2024-08-06 2024-08-06 2024-08-06 Unit G / S RDL 6055636 6055693 6055694 6055695	SAMPLE DESCRIPTION: BH1 BH2 BH3 BH5 BC Surface SAMPLE TYPE: Water Unit G / S RDL 6055636 6055693 6055694 6055695 6055696		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Inis Verastegui

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003

Water Quality Assessment (mg/L) Groundwater

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

DATE RECEIVED: 2024-08-06 **DATE REPORTED: 2024-08-12** SAMPLE DESCRIPTION: BH1 BH2 BH3 BH5 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2024-08-06 2024-08-06 2024-08-06 2024-08-06 Unit RDL 6055636 6055693 RDL 6055694 RDL 6055695 Parameter G/S Electrical Conductivity uS/cm 2 588 567 2 1310 2 524 pН pH Units NA 7.76 7.82 NA 7.68 NA 7.80 Saturation pH (Calculated) 6.90 6.70 6.90 6.96 Langelier Index (Calculated) 0.796 0.915 0.976 0.897 Hardness (as CaCO3) (Calculated) 0.5 306 321 0.5 452 0.5 301 mg/L 10 Total Dissolved Solids mg/L 10 362 354 824 10 290 Alkalinity (as CaCO3) mg/L 5 257 281 5 347 5 281 Bicarbonate (as CaCO3) mg/L 5 257 281 5 347 5 281 5 <5 <5 5 <5 5 <5 Carbonate (as CaCO3) mg/L Hydroxide (as CaCO3) 5 <5 <5 5 <5 5 <5 mg/L Fluoride mg/L 0.05 0.08 0.08 0.05 < 0.05 0.05 0.08 Chloride 0.10 34.4 0.12 202 0.10 mg/L 17.3 4.70 Nitrate as N 0.05 0.05 0.37 1.54 6.10 0.05 1.66 mg/L Nitrite as N 0.05 < 0.05 0.05 < 0.05 0.05 < 0.05 ma/L < 0.05 Bromide mg/L 0.05 < 0.05 < 0.05 0.05 < 0.05 0.05 < 0.05 Sulphate mg/L 0.10 6.89 14.4 0.10 26.9 0.10 3.35 Ortho Phosphate as P mg/L 0.10 < 0.10 <0.10 0.10 < 0.10 0.10 < 0.10 Ammonia as N 0.02 < 0.02 < 0.02 0.02 < 0.02 0.02 < 0.02 mg/L Total Phosphorus mg/L 0.02 < 0.02 < 0.02 0.02 < 0.02 0.02 < 0.02 True Colour TCU 2.50 <2.50 <2.50 2.50 <2.50 2.50 <2.50 Turbidity NTU 0.5 0.7 0.8 0.5 < 0.5 0.5 1.0 **Dissolved Calcium** mg/L 0.05 76.5 74.1 0.05 112 0.05 70.0 **Dissolved Magnesium** mg/L 0.05 27.9 33.0 0.05 41.9 0.05 30.6 **Dissolved Potassium** ma/L 0.50 < 0.50 0.93 0.50 2.75 0.50 < 0.50 **Dissolved Sodium** mg/L 0.05 12.2 10.4 0.05 117 0.05 3.99 0.004 <0.004 0.007 0.004 0.004 0.004 0.009 Dissolved Aluminum mg/L Dissolved Antimony < 0.001 mg/L 0.001 < 0.001 < 0.001 0.001 0.001 < 0.001 **Dissolved Arsenic** mg/L 0.001 < 0.001 < 0.001 0.001 < 0.001 0.001 < 0.001 0.002 Dissolved Barium mg/L 0.002 0.016 0.054 0.071 0.002 0.010 Dissolved Beryllium 0.0005 < 0.0005 < 0.0005 0.0005 < 0.0005 0.0005 < 0.0005 mg/L

Certified By:

Inis Verastegui

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple SAMPLED BY:MG, SF

Water Quality Assessment (mg/L) Groundwater

DATE RECEIVED: 2024-08-06								DATE REPORTED: 2024-08-12	
		SAMPLE DESCRIPTION SAMPLE TYPE DATE SAMPLED	: Water : 2024-08-06	BH2 Water 2024-08-06		BH3 Water 2024-08-06		BH5 Water 2024-08-06	
Parameter	Unit	G/S RDL	6055636	6055693	RDL	6055694	RDL	6055695	
Dissolved Boron	mg/L	0.010	0.137	0.166	0.010	0.169	0.010	0.144	
Dissolved Cadmium	mg/L	0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
Dissolved Chromium	mg/L	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Cobalt	mg/L	0.0005	<0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	
Dissolved Copper	mg/L	0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001	
Dissolved Iron	mg/L	0.020	<0.020	<0.020	0.020	<0.020	0.020	<0.020	
Dissolved Lead	mg/L	0.0005	<0.0005	<0.0005	0.0005	<0.0005	0.0005	<0.0005	
Dissolved Manganese	mg/L	0.002	<0.002	<0.002	0.002	0.005	0.002	<0.002	
Dissolved Mercury	mg/L	0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
Dissolved Molybdenum	mg/L	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Nickel	mg/L	0.001	<0.001	0.001	0.001	0.001	0.001	<0.001	
Dissolved Selenium	mg/L	0.001	<0.001	<0.001	0.001	0.001	0.001	<0.001	
Dissolved Silver	mg/L	0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
Dissolved Strontium	mg/L	0.005	0.062	0.074	0.005	0.123	0.005	0.052	
Dissolved Thallium	mg/L	0.0003	<0.0003	<0.0003	0.0003	<0.0003	0.0003	<0.0003	
Dissolved Tin	mg/L	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Titanium	mg/L	0.003	<0.003	<0.003	0.003	<0.003	0.003	<0.003	
Dissolved Tungsten	mg/L	0.010	<0.010	<0.010	0.010	<0.010	0.010	<0.010	
Dissolved Uranium	mg/L	0.0005	<0.0005	0.0012	0.0005	<0.0005	0.0005	<0.0005	
Dissolved Vanadium	mg/L	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	
Dissolved Zinc	mg/L	0.005	0.006	<0.005	0.005	0.048	0.005	0.018	
Dissolved Zirconium	mg/L	0.004	<0.004	<0.004	0.004	< 0.004	0.004	<0.004	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6055636-6055695 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Irús Verástegui

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2024-08-06

DATE RECEIVED: 2024-08-06					DATE REPORTED: 2024-08
		SAMPLE DES		BC Surface	
			PLE TYPE:	Water	
Denemeter	l l : t		SAMPLED:	2024-08-06	
Parameter	Unit	G/S	RDL	6055696	
Electrical Conductivity	µS/cm		2	2490	
pH	pH Units	6.5-8.5	NA	8.00	
Saturation pH (Calculated)				6.73	
Langelier Index (Calculated)	//		0.5	1.27	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	412	
Total Dissolved Solids	mg/L		10	1200	
Alkalinity (as CaCO3)	mg/L		5	357	
Bicarbonate (as CaCO3)	mg/L		5	357	
Carbonate (as CaCO3)	mg/L		5	<5	
Hydroxide (as CaCO3)	mg/L		5	<5	
Fluoride	mg/L		0.05	<0.05	
Chloride	mg/L		0.49	476	
Nitrate as N	mg/L		0.14	1.92	
Nitrite as N	mg/L		0.11	<0.11	
Bromide	mg/L		0.11	<0.11	
Sulphate	mg/L		0.38	22.8	
Ortho Phosphate as P	mg/L		0.26	<0.26	
Ammonia as N	mg/L		0.02	<0.02	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	<0.00002	
Total Phosphorus	mg/L	*	0.02	<0.02	
True Colour	TCU		2.50	15.5	
Turbidity	NTU		0.5	8.2	
Total Calcium	mg/L		0.20	109	
Total Magnesium	mg/L		0.10	34.0	
otal Potassium	mg/L		0.50	5.68	
Total Sodium	mg/L		0.10	309	
Aluminum-dissolved	mg/L	*	0.004	0.004	
Total Antimony	mg/L	0.020	0.003	<0.003	
Total Arsenic	mg/L	0.1	0.003	<0.003	
Total Barium	mg/L		0.002	0.090	

Certified By:

Inis Verastegui

DATE REPORTED: 2024-08-12

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2024-08-06

DATE RECEIVED. 2024-00-00					DATE REPORTED. 2024-
		SAMPLE DESCRI	PTION: E	BC Surface	
		SAMPLE	TYPE:	Water	
		DATE SAM	MPLED: 2	2024-08-06	
Parameter	Unit	G/S	RDL	6055696	
Total Beryllium	mg/L	* (0.001	<0.001	
Total Boron	mg/L	0.2	0.010	0.193	
Total Cadmium	mg/L	0.0002 0	0.0001	<0.0001	
Total Chromium	mg/L	(0.003	< 0.003	
Total Cobalt	mg/L	0.0009 0	0.0005	<0.0005	
Total Copper	mg/L	0.005	0.002	0.006	
Total Iron	mg/L	0.3	0.050	1.29	
Total Lead	mg/L	* 0	0.0005	0.0034	
Total Manganese	mg/L	(0.002	0.294	
Total Mercury	mg/L	0	0.0001	<0.0001	
Total Molybdenum	mg/L	0.040	0.002	<0.002	
Total Nickel	mg/L	0.025	0.003	<0.003	
Total Selenium	mg/L	0.1	0.002	<0.002	
Total Silver	mg/L	0.0001 0	0.0001	<0.0001	
Total Strontium	mg/L	(0.005	0.282	
Total Thallium	mg/L	0.0003 0	0.0003	<0.0003	
Total Tin	mg/L	(0.002	<0.002	
Total Titanium	mg/L	(0.010	<0.010	
Total Tungsten	mg/L	0.030	0.010	<0.010	
Total Uranium	mg/L	0.005 0	0.0005	<0.0005	
Total Vanadium	mg/L	0.006	0.002	<0.002	
Total Zinc	mg/L	0.030	0.020	0.050	
Total Zirconium	mg/L	0.004	0.004	<0.004	
Lab Filtration Aluminum Dissolved				1	

Certified By:

Inis Verastegui

DATE REPORTED: 2024-08-12

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP.

SAMPLING SITE:11 Main St, Puslinch ON

ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2024-08-06 DATE REPORTED: 2024-08-12 Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6055696 Dissolved Aluminum analysis performed on a lab filtered container. Dilution required, RDL has been increased accordingly. Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as

calculated.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jris Verastegui

Exceedance Summary

AGAT WORK ORDER: 24T182195 PROJECT: T1220482.003 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP.

ATTENTION TO: Paul Raepple

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6055696	BC Surface	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.006
6055696	BC Surface	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	1.29
6055696	BC Surface	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.050

Quality Assurance

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

SAMPLING SITE:11 Main St, Puslinch ON

AGAT WORK ORDER: 24T182195 ATTENTION TO: Paul Raepple

SAMPLED BY:MG, SF

			vvale		nalysi	15								
RPT Date: Aug 12, 2024			DUPLICATE	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch San	nple j Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable nits	Recovery	Lir	ptable nits	Recovery	Lir	eptable nits
							Lower	Upper		Lower	Upper		Lower	Upper
Water Quality Assessment (mg/L	,													
Electrical Conductivity	6055350	488	499	2.2%	< 2	106%	90%	110%						
pH	6055350	7.70	7.87	2.2%	NA	100%	90%	110%						
Total Dissolved Solids	6056576	1460	1470	0.7%	< 10	102%	80%	120%						
Alkalinity (as CaCO3)	6055350	150	151	0.7%	< 5	97%	80%	120%						
Bicarbonate (as CaCO3)	6055350	150	151	0.7%	< 5	NA								
Carbonate (as CaCO3)	6055350	<5	<5	NA	< 5	NA								
Hydroxide (as CaCO3)	6055350	<5	<5	NA	< 5	NA								
Fluoride	6049956	<0.05	<0.05	NA	< 0.05	104%	70%	130%	103%	80%	120%	105%	70%	130%
Chloride	6049956	25.2	25.4	0.8%	< 0.10	95%	70%	130%	103%	80%	120%	102%	70%	130%
Nitrate as N	6049956	<0.05	<0.05	NA	< 0.05	97%	70%	130%	99%	80%	120%	96%	70%	130%
Nitrite as N	6049956	<0.05	<0.05	NA	< 0.05	94%	70%	130%	98%	80%	120%	95%	70%	130%
Bromide	6049956	<0.05	<0.05	NA	< 0.05	99%	70%	130%	100%	80%	120%	98%	70%	130%
Sulphate	6049956	9.75	9.80	0.5%	< 0.00	95%	70%	130%	100%	80%	120%	96%	70%	130%
Ortho Phosphate as P	6049956	<0.10	<0.10	NA	< 0.10	94%	70%	130%	99%	80%	120%	92%	70%	130%
Ammonia as N	6053504	<0.02	<0.02	NA	< 0.02	109%	70%	130%	100%	80%	120%	102%	70%	130%
														4000/
Total Phosphorus	6048025	0.03	0.03	NA	< 0.02	101%	70%	130%	99%	80%	120%	84%	70%	130%
	6043561	33.5	34.8	3.8%	< 2.5	103%	90%	110%						
Turbidity	6055350	34.4	36.8	6.7%	< 0.5	113%	80%	120%						
Dissolved Calcium	6055636 60556		75.5	1.3%	< 0.05	101%	70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Magnesium	6055636 60556	36 27.9	27.8	0.4%	< 0.05	104%	70%	130%	105%	80%	120%	104%	70%	130%
Dissolved Potassium	6055636 60556	36 <0.50	0.56	NA	< 0.50	101%	70%	130%	100%	80%	120%	103%	70%	130%
Dissolved Sodium	6055636 60556	36 12.2	12.0	1.7%	< 0.05	101%	70%	130%	106%	80%	120%	104%	70%	130%
Dissolved Aluminum	6055636 60556	36 <0.004	<0.004	NA	< 0.004	98%	70%	130%	107%	80%	120%	113%	70%	130%
Dissolved Antimony	6055636 60556	36 <0.001	<0.001	NA	< 0.001	103%	70%	130%	104%	80%	120%	107%	70%	130%
Dissolved Arsenic	6055636 60556	36 <0.001	<0.001	NA	< 0.001	97%	70%	130%	98%	80%	120%	106%	70%	130%
Dissolved Barium	6055636 60556	36 0.016	0.017	6.1%	< 0.002	101%	70%	130%	103%	80%	120%	103%	70%	130%
Dissolved Beryllium	6055636 60556		<0.0005	NA	< 0.0005		70%	130%	104%	80%	120%	113%	70%	130%
Dissolved Boron	6055636 60556		0.139	1.4%	< 0.010	101%	70%	130%	108%	80%	120%	110%	70%	130%
Dissolved Cadmium	6055636 60556		<0.0001	NA	< 0.0001		70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Chromium	6055636 60556		<0.002	NA	< 0.002	96%	70%	130%	100%	80%	120%	102%	70%	130%
Dissolved Cabalt			0.0005	NIA	. 0. 0005	0.001	700/	4000/	4040/	000/	4000/	4000/	700/	1200/
Dissolved Cobalt	6055636 60556		< 0.0005	NA	< 0.0005		70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Copper	6055636 60556		<0.001	NA	< 0.001	99%	70%		99%		120%	99%	70%	130%
Dissolved Iron	6055636 60556		< 0.020	NA	< 0.010	101%	70%	130%	103%	80%	120%	108%	70%	130%
Dissolved Lead	6055636 60556			NA	< 0.0005			130%	99%		120%	98%	70%	
Dissolved Manganese	6055636 60556	36 <0.002	<0.002	NA	< 0.002	99%	70%	130%	102%	80%	120%	105%	70%	130%
Dissolved Mercury	6055636 60556	36 <0.0001	<0.0001	NA	< 0.0001	99%	70%	130%	103%	80%	120%	95%	70%	130%
Dissolved Molybdenum	6055636 60556	36 <0.002	<0.002	NA	< 0.002	102%	70%	130%	106%	80%	120%	107%	70%	130%
Dissolved Nickel	6055636 60556	36 <0.001	<0.001	NA	< 0.001	96%	70%	130%	99%	80%	120%	100%	70%	130%
Dissolved Selenium	6055636 60556	36 <0.001	<0.001	NA	< 0.001	106%	70%	130%	98%	80%	120%	109%	700/	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

SAMPLING SITE:11 Main St, Puslinch ON

AGAT WORK ORDER: 24T182195 ATTENTION TO: Paul Raepple SAMPLED BY:MG, SF

Water Analysis (Continued)

RPT Date: Aug 12, 2024		C	UPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
	Batab Sample	D	D		Method Blank	Measured		ptable nits	D		ptable nits		Lin	ptable nits
PARAMETER	Batch	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
Dissolved Silver	6055636 6055636	<0.0001	<0.0001	NA	< 0.0001	98%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Strontium	6055636 6055636	0.062	0.065	4.7%	< 0.005	98%	70%	130%	104%	80%	120%	105%	70%	130%
Dissolved Thallium	6055636 6055636	< 0.0003	< 0.0003	NA	< 0.0003	98%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Tin	6055636 6055636	<0.002	<0.002	NA	< 0.002	103%	70%	130%	105%	80%	120%	104%	70%	130%
Dissolved Titanium	6055636 6055636	<0.003	< 0.003	NA	< 0.002	98%	70%	130%	107%	80%	120%	106%	70%	130%
Dissolved Tungsten	6055636 6055636	<0.010	<0.010	NA	< 0.010	97%	70%	130%	97%	80%	120%	99%	70%	130%
Dissolved Uranium	6055636 6055636	<0.0005	<0.0005	NA	< 0.0005	93%	70%	130%	96%	80%	120%	97%	70%	130%
Dissolved Vanadium	6055636 6055636	<0.002	<0.002	NA	< 0.002	97%	70%	130%	106%	80%	120%	107%	70%	130%
Dissolved Zinc	6055636 6055636	0.006	0.008	NA	< 0.005	99%	70%	130%	99%	80%	120%	103%	70%	130%
Dissolved Zirconium	6055636 6055636	<0.004	<0.004	NA	< 0.004	97%	70%	130%	100%	80%	120%	99%	70%	130%
Water Quality Assessment - P	WQO (mg/L)													
Electrical Conductivity	6055350	488	499	2.2%	< 2	106%	90%	110%						
рН	6055350	7.70	7.87	2.2%	NA	100%	90%	110%						
Total Dissolved Solids	6056576	1460	1470	0.7%	< 10	102%	80%	120%						
Alkalinity (as CaCO3)	6055350	150	151	0.7%	< 5	97%	80%	120%						
Bicarbonate (as CaCO3)	6055350	150	151	0.7%	< 5	NA								
Carbonate (as CaCO3)	6055350	<5	<5	NA	< 5	NA								
Hydroxide (as CaCO3)	6055350	<5	<5	NA	< 5	NA								
Fluoride	6049956	<0.05	<0.05	NA	< 0.05	104%	70%	130%	103%	80%	120%	105%	70%	130%
Chloride	6049956	25.2	25.4	0.8%	< 0.10	95%	70%	130%	103%	80%	120%	102%	70%	130%
Nitrate as N	6049956	<0.05	<0.05	NA	< 0.05	97%	70%	130%	99%	80%	120%	96%	70%	130%
Nitrite as N	6049956	<0.05	<0.05	NA	< 0.05	94%	70%	130%	98%	80%	120%	95%	70%	130%
Bromide	6049956	<0.05	<0.05	NA	< 0.05	99%	70%	130%	100%	80%	120%	98%	70%	130%
Sulphate	6049956	9.75	9.80	0.5%	< 0.10	95%	70%	130%	100%	80%	120%	96%	70%	130%
Ortho Phosphate as P	6049956	<0.10	<0.10	NA	< 0.10	94%	70%	130%	99%	80%	120%	92%	70%	130%
Ammonia as N	6053504	<0.02	<0.02	NA	< 0.02	109%	70%	130%	100%	80%	120%	102%	70%	130%
Total Phosphorus	6046590	0.04	0.04	NA	< 0.02	95%	70%	130%	101%	80%	120%	105%	70%	130%
True Colour	6043561	33.5	34.8	3.8%	< 2.5	103%	90%	110%						
Turbidity	6055350	34.4	36.8	6.7%	< 0.5	113%	80%	120%						
Total Calcium	6055350	45.0	38.7	15.1%	< 0.20	89%	70%	130%	94%	80%	120%	110%	70%	130%
Total Magnesium	6055350	21.2	19.7	7.3%	< 0.10	106%	70%	130%	109%	80%	120%	95%	70%	130%
Total Potassium	6055350	0.90	0.83	NA	< 0.50	102%		130%	105%		120%	98%	70%	
Total Sodium	6055350	37.3	34.8	6.9%	< 0.10	102%	70%	130%	109%	80%	120%	115%	70%	130%
Aluminum-dissolved	6055696 6055696	0.004	<0.004	NA	< 0.004	102%		130%	108%		120%	114%		130%
Total Antimony	6055350	<0.003	<0.003	NA	< 0.003	103%		130%	107%		120%	109%	70%	
Total Arsenic	6055350	0.005	0.005	NA	< 0.003	99%	70%	130%	104%	80%	120%	107%	70%	130%
Total Barium	6055350	0.066	0.063	4.7%	< 0.002	99%		130%	103%		120%	105%		130%
Total Beryllium	6055350	<0.001	<0.001	NA	< 0.001	102%		130%	112%		120%	104%		130%
Total Boron	6055350	0.173	0.169	2.3%	< 0.010	101%	70%	130%	116%	80%	120%	102%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

SAMPLING SITE:11 Main St, Puslinch ON

AGAT WORK ORDER: 24T182195 ATTENTION TO: Paul Raepple SAMPLED BY:MG, SF

		۱.	Nate	r Ana	lysis	s (Cor	ntinu	ed)							
RPT Date: Aug 12, 2024			C	UPLICATE	Ξ		REFERE	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SP	IKE
PARAMETER Batch		Sample	Dup #1	Dup #2	RPD		Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery		eptable nits
							value	Lower	Upper	_	Lower	Upper	_	Lower	Upper
Total Cadmium	6055350		<0.0001	<0.0001	NA	< 0.0001	97%	70%	130%	100%	80%	120%	99%	70%	130%
Total Chromium	6055350		<0.003	<0.003	NA	< 0.003	99%	70%	130%	101%	80%	120%	101%	70%	130%
Total Cobalt	6055350		<0.0005	<0.0005	NA	< 0.0005	98%	70%	130%	101%	80%	120%	98%	70%	130%
Total Copper	6055350		0.183	0.186	1.6%	< 0.002	98%	70%	130%	100%	80%	120%	94%	70%	130%
Total Iron	6055350		5.17	5.19	0.4%	< 0.050	100%	70%	130%	103%	80%	120%	102%	70%	130%
Total Lead	6055350		0.0091	0.0089	2.2%	< 0.0005	97%	70%	130%	99%	80%	120%	97%	70%	130%
Total Manganese	6055350		0.031	0.031	0.0%	< 0.002	101%	70%	130%	104%	80%	120%	106%	70%	130%
Total Mercury	6055350		<0.0001	<0.0001	NA	< 0.0001	99%	70%	130%	103%	80%	120%	96%	70%	130%
Total Molybdenum	6055350		0.008	0.008	NA	< 0.002	102%	70%	130%	106%	80%	120%	106%	70%	130%
Total Nickel	6055350		<0.003	0.003	NA	< 0.003	98%	70%	130%	100%	80%	120%	99%	70%	130%
Total Selenium	6055350		<0.002	<0.002	NA	< 0.002	97%	70%	130%	104%	80%	120%	107%	70%	130%
Total Silver	6055350		<0.0001	<0.0001	NA	< 0.0001	99%	70%	130%	99%	80%	120%	98%	70%	130%
Total Strontium	6055350		1.33	1.28	3.8%	< 0.005	101%	70%	130%	105%	80%	120%	100%	70%	130%
Total Thallium	6055350		< 0.0003	< 0.0003	NA	< 0.0003	100%	70%	130%	102%	80%	120%	101%	70%	130%
Total Tin	6055350		0.003	0.003	NA	< 0.002	105%	70%	130%	105%	80%	120%	105%	70%	130%
Total Titanium	6055350		<0.010	<0.010	NA	< 0.010	99%	70%	130%	93%	80%	120%	100%	70%	130%
Total Tungsten	6055350		<0.010	<0.010	NA	< 0.010	97%	70%	130%	98%	80%	120%	96%	70%	130%
Total Uranium	6055350		<0.0005	<0.0005	NA	< 0.0005	93%	70%	130%	97%	80%	120%	99%	70%	130%
Total Vanadium	6055350		<0.010	<0.010	NA	< 0.002	100%	70%	130%	104%	80%	120%	106%	70%	130%
Total Zinc	6055350		0.264	0.256	3.1%	< 0.020	100%	70%	130%	100%	80%	120%	111%	70%	130%
Total Zirconium	6055350		<0.004	<0.004	NA	< 0.004	95%	70%	130%	98%	80%	120%	98%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

тос												
Total Organic Carbon	6056775	<0.5	<0.5	NA	< 0.5	99%	80% 120%	NA	80% 120	6 98%	80% 1209	%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

AGAT WORK ORDER: 24T182195 **ATTENTION TO: Paul Raepple** SAMPLED BY:MG. SF

SAMPLING	SITE-11	Main St.	Puslinch	ON
	0116.11	mann ot,	i usiiiioii	

SAMPLING SITE:11 Main St, Puslinc	h ON	SAMPLED BY:MO	6, SF
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Saturation pH (Calculated)		SM 2320 B	CALCULATION
Langelier Index (Calculated)		SM 2330B	CALCULATION
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE
Bicarbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Hydroxide (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Bromide	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ortho Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Total Phosphorus	INOR-93-6057	modified from LACHAT 10-115-01-3A	LACHAT FIA
True Colour	INOR-93-6074	modified from SM 2120 B	LACHAT FIA
Turbidity	INOR-93-6000	modified from SM 2130 B	PC TITRATE
Dissolved Calcium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Dissolved Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Dissolved Potassium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Dissolved Aluminum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS

Method Summary

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

AGAT WORK ORDER: 24T182195 ATTENTION TO: Paul Raepple

SAMPLING SITE:11 Main St. Puslinch ON

ATTENTION TO: Paul Raeppl SAMPLED BY:MG. SF

SAMPLING SITE:11 Main St, Puslinch	ON	SAMPLED BY:MO	э, 5г
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dissolved Iron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 311 B	² CVAAS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Strontium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Tin	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Titanium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Tungsten	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zirconium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Calcium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Potassium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Total Sodium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Method Summary

CLIENT NAME: ENGLOBE CORP.

PROJECT: T1220482.003

AGAT WORK ORDER: 24T182195 ATTENTION TO: Paul Raepple

SAMPLING SITE:11 Main St, Pusling	ch ON	SAMPLED BY:M	IG, SF
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 31 B	¹² CVAAS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Aluminum Dissolved	SR-78-9001		FILTRATION

AGATL	aboratories	Have feedb Scan here quick surv	for a Ph		5835 Coo sauga: Onta 100 Fax: 90 webearth.a	5 712 5122		Order #: 2		1age
Chain of Custody Reco	rd If this is a Drinking Water samp	le, please use Drin	nking Water Chain of Custody Form (potat	le water consi	umed by huma	ns)	Arriv	er Quantity: al Temperature ot Temperature:		5.3 6.1
Report Information: Company: Contact: Address:		(Please	gulatory Requirements: se check all applicable boxes) Regulation 153/04 Table		Sewer Use]Sanitary [Region] Storm	Cust Note	ody Seal Intact:	□Yes	quired:
Phone: Reports to be sent to: 1. Email: 2. Email:	Fax:	C	Res/Park Res/Park Agriculture Agriculture Texture (Check One) Regulation 558 Coarse CCME		Prov. Water Q Objectives (P Other	WQO)		3 Business Days	2 Busine Days	
Project Information: Project: T1220482 Site Location: II Main St Sampled By: MG + SF	puslinch , ON		his submission for a Record of Site Condition (RSC)? Yes No		rt Guideli Icate of Al es [Fo	*TAT is exclus	ive of weekends a	ation for rush TAT and statutory holidays ontact your AGAT CSR
AGAT Quote #:	PO: _PO:		gal Sample 🔲	crvi, Doc	0. Reg 153			eg 406 0. Re 558	g A	
Invoice Information: Company: Englobe Contact: Poul Ralep Address: 20 Carlson Email: Paul Raleppi	Bill To Same: Yes ple ct Etobicoke le@englobecorp.con	GW O	mple Matrix LegendGround WaterSDSedimentOilSWSurface WaterPaintRRock/ShaleSoilSoilSoil	Field Filtered - Metals, Hg, & Inordanice	s - 🗆 crvi, 🗆 Hg, 🗆 HWSB F1-F4 PHCs		PCBS: Anocions L Regulation 406 Characterization Package pH, Metals, BTEX, F1-F4	on 406 SPLP Rainw D Metals D VOCs Disposal Characteri		
Sample Identification		# of Sample tainers Matrix	Comments/ Special Instructions	Y/N Wetale	Metals - BTEX, F1	VOC PAHS	PCBS: / Regula pH, Me	EC, SAR Regulation 4 mSPLP: D N Landfill Disp	Corrosivity: I	
1. BHI 2. BHZ 3. BH3	Augichs AM Augichu AM Augichu AM	GW GW		Y Y Y			394 295 201		V	
 4. BH5 5. BC-surface 6. 	Augo/M PM Augo/M PM Augo/M PM PM	GW SW		Ň						
7. 8. 9.	AM PM AM PM AM									
10.	AM PM AM PM		1 11 11 11 11 11 11 11 11 11 11 11 11 1		-					
Samoles Relinquished Brithint Name and Stent	Aug6/24	Time	Samples Received By (Print Name and Sign):	-	785	Date		Time	24	AUG 6 5:40
Samples Relinquished By (Print Name and Sign):	Date	Time	Samples Received By (Print Name and Sign):			Date		Time	Page	of
Samples Relinquished By (Print Name and Sign):	Date	Time	Samples Received By (Print Name and Sign):			Date		Time	Nº: T −	160276

CA40056-FEB23 R----

T1220482.002, 11 Main St. Pushinch

Prepared for

Terraprobe Inc

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Terraprobe Inc	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, ON		
	L6T 3Y3. Canada		
Contact	Rachel Geddam	Telephone	705-652-2000
Telephone	(905) 796-2650	Facsimile	705-652-6365
Facsimile	(905) 796-2250	Email	Maarit.Wolfe@sgs.com
Email	rgeddam@terraprobe.ca	SGS Reference	CA40056-FEB23
Project	T1220482.002, 11 Main St. Pushinch	Received	02/07/2023
Order Number		Approved	02/13/2023
Samples	Ground Water (3)	Report Number	CA40056-FEB23 R
		Date Reported	02/13/2023

COMMENTS

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 028748

SIGNATORIES

Maarit Wolfe, Hon.B.Sc HMWOYe

TABLE OF CONTENTS

First Page	1
ndex	2
Results	3
QC Summary	4-6
Legend	7
Annexes	8

Client: Terraprobe Inc

Project: T1220482.002, 11 Main St. Pushinch

Project Manager: Rachel Geddam

Samplers: Saiyajit Manami

MATRIX: WATER			Sample Number	5	6	7
			Sample Name	BH2	BH3	BH5
			Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	07/02/2023	07/02/2023	07/02/2023
Parameter	Units	RL		Result	Result	Result
General Chemistry						
Ammonia+Ammonium (N)	as N mg/L	0.1		< 0.1	0.4	0.1
Metals and Inorganics			· · · · ·			
Phosphorus (total)	mg/L	0.03		0.36	< 0.03	0.44
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		2.54	6.01	0.31
Nitrate + Nitrite (as N)	as N mg/L	0.06		2.54	6.01	0.31
Other (ORP)						
pН	No unit	0.05		7.74	7.77	7.88

QC SUMMARY

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0082-FEB23	as N mg/L	0.1	<0.1	0	10	101	90	110	98	75	125
Ammonia+Ammonium (N)	SKA0108-FEB23	as N mg/L	0.1	<0.1	0	10	97	90	110	90	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	atrix Spike / Rei	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0160-FEB23	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0160-FEB23	mg/L	0.03	<0.03	ND	20	96	90	110	92	75	125
Nitrate (as N)	DIO0160-FEB23	mg/L	0.06	<0.06	0	20	99	90	110	99	75	125

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		əry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0122-FEB23	No unit	0.05	NA	0		100			NA		

Phosphorus by SFA

Method: SM 4500-P J | Internal ref.: ME-CA-IENVISFA-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits	Spike	Recover	-
						(%)	Recovery	(%)	Recovery	(9	6)
							(%)	Low	High	(%)	Low	High
Phosphorus (total)	SKA0080-FEB23	mg/L	0.03	<0.03	1	10	100	90	110	80	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 51	sortium Court,	London, ON, h	- London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	: 519-672-45(0 Toll Free:	9-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	60 Fax: 519)-672-0361							Page	Page 1 of 1
Brig		Received By (signature):	(signature):	Labor	Laboratory Information Section - Lab use only	mation S	ection - I	ab use	vilo /		1						We
Received Date: Keb / Y / 23 (mm/dd/yy) Received Time: U : US (hr: min)	(7)	Custody Seal Preser Custody Seal Intact:	Custody Seal Present: Yes Custody Seal Intact: Yes	2 2 S		Cooling Ag Temperatu	Cooling Agent Present: Yes T Temperature Upon Receipt (°C)_	X I	ر ع	Type:	y.			LAB	LIMS #: C	40056	LAB LINS # CA 40056 - Feb 23
REPORT INFORMATION	Z	INVOICE INFORMATION	RMATION														
Terrepa	(same as Report Information)	eport Informa	ttion)		Quotation #:				12			P.O.#:	#:	1			
	Company:				Project #:	1122	2048	5.0	05			Site	Site Location/ID:	LI MOUT	2	· Puohina	100
Address: 11 Jacobe Cone	Contact:				ý I					TURNAR	DUND TI	AE (TAT) } TAT's a	TURNAROUND TIME (TAT) REQUIRED TAT's are moted in t	utsiness day	s (exclude st	TAT) REQUIRED TAT's are quoted in business davs (exclude statutory holidavs & weekends)	& weekende)
101	Address:	2			Ž	CKegular IAI (5-/days)	(child a child be child be child be a child be a child be a child be a child					Sample	s received af	ter 6pm or ol	weekends:	Samples received after 6pm or on weekends: TAT begins next business day	business day
Phone: 905 196 -250 Fax. 905 796 -2250	Phone:			Ner 2	RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	(Addition: NFIRM R	SH TAT (Additional Charges May Apply); EASE CONFIRM RUSH FEASIBILITY WIT	May App IBILITY M	ly): VITH SGS	T 1 Day REPRESEN	IN 21	TATIVE PRIOR 1	3 Days 4	4 Days			Preserver
Email: 79ed dometerrore Email:	Email:				Specify Due Date:	Date:			N*	DTE: DRIP	IKING (PO	TABLE) WA	ABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC WITH SGS DRINKING WATER CHAIN OF CLISTODY	S FOR HUN	IAN CONSUL	MPTION MUST	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CURSTODY
Cer REGI	REGULATIONS							A	ANAL YSIS REQUESTED	SIS RE	OUES	TED					
O.Reg 153/04 O.Reg 406/19	Other Regulations:	tions:	Sewe	Sewer Bv-Law:	W	<u>م</u> ا	SVOC	PCE	PHC	VOC	Pest		Other (please specify)	specify)	SPLP TCLP	CLP	
Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine	Reg 347/558	Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other:		Sanitary Storm Municipality:	(slor							Specify Sp tests te	Specify tests	
Table	MISA ODWS Not F	MISA ODWS Not Reportable *See note	e note		soi	Hg, CrVI		Αιο				50		DN Pkg	10		
RECORD OF SITE CONDITION (RSC)		ON 🗌			dan	y sb. (Vino liv) ds V	z,v,u,n				vothei	4	+	i j6zi bebne			COMMENIS:
SAMPLE IDENTIFICATION	DATE	TIME	TIME # OF	MATRIX) bərətli [–] s & Inorg (^{1001,92} (^H /97), (¹⁰¹⁰ , ¹⁰¹ , ¹⁰¹	u <mark>S slstel</mark> pe-2WH)8 suig ino slste	Vino	S Is, ABNs, CPs Total	oujλ + BLEX	XEX		1 or el		Character 9:	Dioxane Dioxane	LPCB DB(a)P DABN	
					Metal	ICP M ICP metals ICP M	eHA9	PCBs	1-1-1	vocs all incl BT	BTEX Pestic	1N	杨	Sewer Specify pk Water General		Dignit.	
13H2	Feber 123	10.45	es)	wouler								77	7				a state of the
вна	1.1	9:00	3			Electron of				active.		3	7				
GHS	11	\$:00	en			24035-240						5	7				
				And the second	「水」ない												
																	1. ALL
				料工で													
			Salaria and									6					
					なっての												
ur filter och järlen ens Sviktobet	14.5 × 10		1.2			1											And a straight
						27 (). September 1											
	and the second second																
12 Observations/Comments/Special Instructions	Alter and a second			and the second												1	
Sampled By (NAME): 2014 2011 + 20 cm cm			Signature.	AMN BALL	IT						00	20	000	0			
13	1110	ALCONT LAND	- annunkio	2 mar	In					ň	ate: C	2	100	(mm/dd/yy)	(J)	Pink Copy - Client	- Client
		AND STORE STORES AND											L	The second secon			

Appendix F Nitrate Mass Balance Calculations

CONVE	NTIONAL EFFLUENT T	REATMENT (40 mg/l	(د		
Subject Site Information					
Proposed Development: Residential Lot 18	2				
Total Site Area	1,940.00 m ²	(Draft Plan of Subdivisio	on-Weston Consulting, June 9, 2024)		
Net Area for recharge (Assuming impervious surfaces will be managed on site)	1,940.00 m ²				
Calculation of Infiltration Rate		Infiltr Fac	ctors:		
Annual Water Surplus (after interception)	402.65 mm/yr	Slope	Rolling Land (0.2)		
former MOE infiltration factor (total)	0.60	cover	Cultivated Land (0.1)		
Weighted infiltration to soil	241.59 mm/yr	soil	Silty Sand (0.3)		
Nitrate going into the system					
Concentration of nitrate in precipitation	0.1 mg/L	Source: G.K.Rutherfor	rd		
Net Area for recharge (Assuming impervious surfaces will be managed on site)	1,940.00 m ²	Considers Entire Site	Recharges Groundwater		
Infiltration of soil	0.24159 m/yr				
Annual Infiltration to site (volume)	468.68 m ³ /yr				
volume of recharge to soil/groundwater table	468,684.60 L/yr				
Nitrate exiting leaching bed system					
Concentration of nitrate in septic bed effluent	40 mg/L	Assumed Conventiona	l Loading System		
Proposed Area for septic bed	368.00 m ²	23x16 m as per email rec	reived from Crozier on Feb. 13, 2023		
	1000 L/day	Average sewage flow			
Assumed loading rate of sewage system	365.00 m ³ /yr				
assuming residential development	365,000.00 L/yr				
Calculated Concentration at Site Boundary	17.57 mg/L	>10 mg/L (Maximum			
based on conventional sewage systems		Concentration of Nitra Boundary, based on O			
Geomean background nitrate in groundwater	1.55 mg/L				
Alernate calculation considering geomean background nitrate in groundwater (@1.68 mg/L)	19.12 mg/L	>10 mg/L (Maximum Concentration of Nitra Boundary, based on O	ate at Property		

results assume no dilution resulting from groundwater underflow

*Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.

TERI	IARY EFFLUENT TRE	ATMENT (20 mg/L)	
Subject Site Information			
Proposed Development: Residential Lot 18			
Total Site Area	1,940.00 m ²	(Draft Plan of Subdivisio	on-Weston Consulting, June 9, 2024)
Net Area for recharge (Assuming impervious	1,940.00 m ²		
surfaces will be managed on site)			
Calculation of Infiltration Rate		Infiltr Fa	ctors:
Annual Water Surplus (after interception)	402.65 mm/yr	Slope	Rolling Land (0.2)
former MOE infiltration factor (total)	0.60	cover	Cultivated Land (0.1)
Weighted infiltration to soil	241.59 mm/yr	soil	Silty Sand (0.3)
Nitrate going into the system			
Concentration of nitrate in precipitation	0.1 mg/L	Source: G.K.Rutherfo	rd
Net Area for recharge (Assuming impervious	1,940.00 m ²	Considers Entire Site	Recharges Groundwater
surfaces will be managed on site)			
Infiltration of soil	0.24159 m/yr		
Annual Infiltration to site (volume)	468.68 m ³ /yr		
volume of recharge to soil/groundwater table	468,684.60 L/yr		
Nitrate exiting leaching bed system			
Concentration of nitrate in septic bed effluent	20 mg/L	Assumed Tertiary Loa	nding System
Proposed Area for septic bed	368.00 m ²	23x16 m as per email rec	ceived from Crozier on Feb. 13, 2023
	1000.00 L/day		low as per email received on February
Assumed loading rate of sewage system	365.00 m ³ /yr	16, 2023.	
assuming commercial development	365,000.00 L/yr		
Calculated Concentration at Site Boundary	8.81 mg/L	<10 mg/L (Maximum	
based on conventional sewage systems	-	Concentration of Nitra Boundary, based on C	
		Boundary, based off O	נטוז שי
Geomean background nitrate in groundwater	1.55 mg/L	-	
Alernate calculation considering average background nitrate in groundwater (@1.68 mg/L)	10.36 mg/L	>10 mg/L (Maximum Concentration of Nitra Boundary, based on C	ate at Property

results assume no dilution resulting from groundwater underflow

*Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.

ADVIANCED TERTIARY EFFLUENT TREATMENT (15 mg/L)

Subject Site Information			
Proposed Development: Residential Lot 18			
Total Site Area	1,940.00 m ²	(Draft Plan of Subdivisio	on-Weston Consulting, June 9, 2024)
Net Area for recharge (Assuming impervious surfaces will be managed on site)	1,940.00 m ²		
Calculation of Infiltration Rate		<u>Infiltr Fa</u>	ctors:
Annual Water Surplus (after interception)	402.65 mm/yr	Slope	Rolling Land (0.2)
former MOE infiltration factor (total)	0.60	cover	Cultivated Land (0.1)
Weighted infiltration to soil	241.59 mm/yr	soil	Silty Sand (0.3)
Nitrate going into the system			
Concentration of nitrate in precipitation	0.1 mg/L	Source: G.K.Rutherfo	rd
Net Area for recharge (Assuming impervious surfaces will be managed on site)	1,940.00 m ²	Considers Entire Site	Recharges Groundwater
Infiltration of soil	0.24159 m/yr		
Annual Infiltration to site (volume)	468.68 m ³ /yr		
volume of recharge to soil/groundwater table	468,684.60 L/yr		
Nitrate exiting leaching bed system			
Concentration of nitrate in septic bed effluent	15 mg/L	Assumed Advanced T	ertiary Loading System
Proposed Area for septic bed	368.00 m ²	23x16 m as per email rec	ceived from Crozier on Feb. 13, 2023
	1000.00 L/day	Average sewage flow	
Assumed loading rate of sewage system	365.00 m ³ /yr		
assuming commercial development	365,000.00 L/yr		
Calculated Concentration at Site Boundary	6.62 mg/L	<10 mg/L (Maximum	
based on conventional sewage systems		Concentration of Nitra Boundary, based on C	
Geomean background nitrate in groundwater	1.55 mg/L		
Alernate calculation considering geomean background nitrate in groundwater (@1.68	8.17 mg/L	<10 mg/L (Maximum Concentration of Nitra	

results assume no dilution resulting from groundwater underflow

*Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.